目的 变电站图像拼接篡改是电力系统的一大安全隐患,针对篡改图像背景复杂、篡改内容尺度不一造成的误检漏检问题以及相关研究较少,本文提出一种面向变电站的拼接篡改图像的双通道检测模型。方法 两通道均采用深度学习方法自适应提取篡...目的 变电站图像拼接篡改是电力系统的一大安全隐患,针对篡改图像背景复杂、篡改内容尺度不一造成的误检漏检问题以及相关研究较少,本文提出一种面向变电站的拼接篡改图像的双通道检测模型。方法 两通道均采用深度学习方法自适应提取篡改图像和残差图像的特征,其中篡改图像包含丰富的色彩特征和内容信息,残差图像重点凸显了篡改区域的边缘,有效应对了篡改图像多样性导致的篡改特征提取困难问题;将特征金字塔结构Transformer通道作为网络主分支,通过全局交互机制获取图像全局信息,建立关键点之间的联系,使模型具备良好的泛化性和多尺度特征处理能力;引入浅层卷积神经网络(convolutional neural network, CNN)通道作为辅助分支,着重提取篡改区域的边缘特征,使模型在整体轮廓上更容易定位篡改区域。结果 实验在自制变电站拼接篡改数据集(self-made substation splicing tampered dataset, SSSTD)、CASIA(Chinese Academy of Sciences Institute of Automation dataset)和NIST16(National Institute of Standards and Technology 16)上与4种同类型方法进行比较。定量上看,在SSSTD数据集中,本文模型相对性能第2的模型在精确率、召回率、F1和平均精度上分别提高了0.12%、2.17%、1.24%和7.71%;在CASIA和NIST16数据集中,本文模型也取得了最好成绩。定性上看,所提模型减少了误检和漏检,同时定位精度更高。结论 本文提出的双通道拼接篡改检测模型结合了Transformer和CNN在图像篡改检测方面的优势,提高了模型的检测精度,适用于复杂变电站场景下的篡改目标检测。展开更多
文摘目的 变电站图像拼接篡改是电力系统的一大安全隐患,针对篡改图像背景复杂、篡改内容尺度不一造成的误检漏检问题以及相关研究较少,本文提出一种面向变电站的拼接篡改图像的双通道检测模型。方法 两通道均采用深度学习方法自适应提取篡改图像和残差图像的特征,其中篡改图像包含丰富的色彩特征和内容信息,残差图像重点凸显了篡改区域的边缘,有效应对了篡改图像多样性导致的篡改特征提取困难问题;将特征金字塔结构Transformer通道作为网络主分支,通过全局交互机制获取图像全局信息,建立关键点之间的联系,使模型具备良好的泛化性和多尺度特征处理能力;引入浅层卷积神经网络(convolutional neural network, CNN)通道作为辅助分支,着重提取篡改区域的边缘特征,使模型在整体轮廓上更容易定位篡改区域。结果 实验在自制变电站拼接篡改数据集(self-made substation splicing tampered dataset, SSSTD)、CASIA(Chinese Academy of Sciences Institute of Automation dataset)和NIST16(National Institute of Standards and Technology 16)上与4种同类型方法进行比较。定量上看,在SSSTD数据集中,本文模型相对性能第2的模型在精确率、召回率、F1和平均精度上分别提高了0.12%、2.17%、1.24%和7.71%;在CASIA和NIST16数据集中,本文模型也取得了最好成绩。定性上看,所提模型减少了误检和漏检,同时定位精度更高。结论 本文提出的双通道拼接篡改检测模型结合了Transformer和CNN在图像篡改检测方面的优势,提高了模型的检测精度,适用于复杂变电站场景下的篡改目标检测。