China has achieved a political consensus around the need to transform the path of economic growth toward one that lowers carbon intensity and ultimately leads to reductions in carbon emissions, but there remain differ...China has achieved a political consensus around the need to transform the path of economic growth toward one that lowers carbon intensity and ultimately leads to reductions in carbon emissions, but there remain different views on pathways that could achieve such a transformation. The essential question is whether radical or incremental reforms are required in the coming decades. This study explores relevant pathways in China beyond 2020, particularly modeling the major target choices of carbon emission peaking in China around 2030 as China-US Joint Announcement by an integrated assessment model for climate change IAMC based on carbon factor theory. Here scenarios DGS-2020, LGS2025, LBS-2030 and DBS-2040 derived from the historical pathways of developed countries are developed to access the comprehensive impacts on the economy, energy and climate security for the greener development in China. The findings suggest that the period of 2025--2030 is the window of opportunity to achieve a peak in carbon emissions at a level below 12 Gt CO2 and 8.5 t per capita by reasonable trade-offs from economy growth, annually -0.2% in average and cumulatively -3% deviation to BAU in 2030. The oil and natural gas import dependence will exceed 70% and 45% respectively while the non-fossil energy and electricity share will rise to above 20% and 45%. Meantime, the electrification level in end use sectors will increase substantially and the electricity energy ratio approaching 50%, the labor and capital productivity should be double in improvements and the carbon intensity drop by 65% by 2030 compared to the 2005 level, and the cumulative emission reductions are estimated to be more than 20 Gt CO2 in 2015-2030.展开更多
Patterns of shear band, precursors to shear failure occurring in strain-softening stage, axial, lateral and volumetric strains as well as Poisson's ratio of plane strain rock specimens in compression for different he...Patterns of shear band, precursors to shear failure occurring in strain-softening stage, axial, lateral and volumetric strains as well as Poisson's ratio of plane strain rock specimens in compression for different heights were investigated by use of Fast Lagrangian Analysis of Continua(FLAC). A material imperfection closer to the lower-left corner of the specimen was prescribed. For finer mesh, the imperfection was modeled by four null elements, while it was modeled by a null element for coarser mesh. FISH functions were written to calculate the entire deformational characteristics of the specimen. In elastic stage, the adopted constitutive relation was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. Height of rock specimen does not influence shear band's pattern (including the thickness and inclination angle of shear band). The slopes of the post-peak stress-axial strain curve, stress-lateral strain curve, lateral strain-axial strain curve, Poisson's ratio-axial strain curve and volumetric strain-axial strain curve depend on the height. Hence, the slopes of these curves cannot be considered as material properties. Nonlinear deformation prior to the peak stress is a kind of precursors to shear failure, which is less apparent for shorter specimen. For the same axial strain, lower lateral expansion is reached for shorter specimen, leading to lower Poisson's ratio and higher volumetric strain. The maximum volumetric strain of longer specimen is less than that of shorter specimen. The conclusions drawn from numerical results using finer mesh qualitatively agree with those using coarser mesh.展开更多
Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechani...Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0-0.1 MPa), to the conjugate shear bands (0.5-2.0 MPa), and then to the single shear band (4-28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate.展开更多
This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of ma...This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.展开更多
The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effec...The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.展开更多
基金supported by National Science and Technology Program"The Key Supporting Research of The International Negotiations on Climate Change and the Domestic Emission Reduction"(2012BAC20B04)
文摘China has achieved a political consensus around the need to transform the path of economic growth toward one that lowers carbon intensity and ultimately leads to reductions in carbon emissions, but there remain different views on pathways that could achieve such a transformation. The essential question is whether radical or incremental reforms are required in the coming decades. This study explores relevant pathways in China beyond 2020, particularly modeling the major target choices of carbon emission peaking in China around 2030 as China-US Joint Announcement by an integrated assessment model for climate change IAMC based on carbon factor theory. Here scenarios DGS-2020, LGS2025, LBS-2030 and DBS-2040 derived from the historical pathways of developed countries are developed to access the comprehensive impacts on the economy, energy and climate security for the greener development in China. The findings suggest that the period of 2025--2030 is the window of opportunity to achieve a peak in carbon emissions at a level below 12 Gt CO2 and 8.5 t per capita by reasonable trade-offs from economy growth, annually -0.2% in average and cumulatively -3% deviation to BAU in 2030. The oil and natural gas import dependence will exceed 70% and 45% respectively while the non-fossil energy and electricity share will rise to above 20% and 45%. Meantime, the electrification level in end use sectors will increase substantially and the electricity energy ratio approaching 50%, the labor and capital productivity should be double in improvements and the carbon intensity drop by 65% by 2030 compared to the 2005 level, and the cumulative emission reductions are estimated to be more than 20 Gt CO2 in 2015-2030.
基金Supported by the National Natural Science Foundation of China(50309004)
文摘Patterns of shear band, precursors to shear failure occurring in strain-softening stage, axial, lateral and volumetric strains as well as Poisson's ratio of plane strain rock specimens in compression for different heights were investigated by use of Fast Lagrangian Analysis of Continua(FLAC). A material imperfection closer to the lower-left corner of the specimen was prescribed. For finer mesh, the imperfection was modeled by four null elements, while it was modeled by a null element for coarser mesh. FISH functions were written to calculate the entire deformational characteristics of the specimen. In elastic stage, the adopted constitutive relation was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. Height of rock specimen does not influence shear band's pattern (including the thickness and inclination angle of shear band). The slopes of the post-peak stress-axial strain curve, stress-lateral strain curve, lateral strain-axial strain curve, Poisson's ratio-axial strain curve and volumetric strain-axial strain curve depend on the height. Hence, the slopes of these curves cannot be considered as material properties. Nonlinear deformation prior to the peak stress is a kind of precursors to shear failure, which is less apparent for shorter specimen. For the same axial strain, lower lateral expansion is reached for shorter specimen, leading to lower Poisson's ratio and higher volumetric strain. The maximum volumetric strain of longer specimen is less than that of shorter specimen. The conclusions drawn from numerical results using finer mesh qualitatively agree with those using coarser mesh.
基金Supported by the National Natural Science Foundation of China(50490275,50309004)
文摘Influence of confining pressure from 0 to 28 MPa, which acts on the two lateral edges of rock specimen in plane strain compression, on the shear failure processes and patterns as well as on the macroscopically mechanical responses were numerically modeled by use of FLAC. A material imperfection with lower strength in comparison with the intact rock, which is close to the lower-left corner of the specimen, was prescribed. In elastic stage, the adopted constitutive relation of rock was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. The numerical results show that with an increase of confining pressure the peak strength of axial stress-axial strain curve and the corresponding axial strain linearly increase; the residual strength and the stress drop from the peak strength to the residual strength increase; the failure modes of rock transform form the multiple shear bands close to the loading end of the specimen (confining pressure=0-0.1 MPa), to the conjugate shear bands (0.5-2.0 MPa), and then to the single shear band (4-28 MPa). Once the tip of the band reaches the loading end of the specimen, the direction of the band changes so that the reflection of the band occurs. At higher confining pressure, the new-formed shear band does not intersect the imperfection, bringing extreme difficulties in prediction of the failure of rock structure, such as rock burst. The present results enhance the understanding of the shear failure processes and patterns of rock specimen in higher confining pressure and higher loading strain rate.
基金The School of Mining Engineering,University of the Witwatersrand South Africa is acknowledged for providing support towards the success of this researchSpecifically the Centennial Trust Fund for Rock Engineering is appreciated for funding part of this research
文摘This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.
基金supported by the National Natural Science Foundation of China(21972170,22072184)the Fund for Academic Innovation Teams of South-Central Minzu University(XTZ24013)
文摘The intrinsic strains at the confinement interface of iron carbide with graphene play important roles in the catalytic Fischer-Tropsch synthesis.In this study,we performed theoretical study of the biaxial strain effects on the CO adsorption and dissociation on the Fe_(2)C(121)surface covered by graphene(Fe_(2)C@graphene).By varying the lattice strains within a range of±5%,the apparent energy barriers(E_(a,app))correlate with the adsorption energies(E_(ad))in nonlinear scaling relations for the direct and H-assisted CO dissociation at the Fe_(2)C active sites,which is normal Br∅nsted-Evans-Polanyi relation for those at the graphene sites.The nonlinear scaling relations can be interpreted by the strain effects on the confinement distances in the adsorption and transition states.This study provides a deep understanding of the intrinsic strain effects of Fe_(2)C@graphene for CO activation.