Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayl...Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.展开更多
The performance of OFDM systems may be degraded when intersymbol interference (ISI) channels have spectral nulls. Recently, the precoded OFDM was proposed to combat this problem. However, due to inserting (M- K) z...The performance of OFDM systems may be degraded when intersymbol interference (ISI) channels have spectral nulls. Recently, the precoded OFDM was proposed to combat this problem. However, due to inserting (M- K) zeros between each two sets of K consecutive information symbols, the average transmitting power of the precoded OFDM system reduces by 10log10(M/K) dB compared with the conventional OFDM system. Under the same points inverse fast Fourier transformation (IFFF), the precoded OFDM system has a higher peak-to-average power ratio (PAPR) compared with the conventional OFDM system. This paper proposes a novel precoded BPSK-OFDM system based on Haar wavelet transformation. The Haar wavelet transformation operating decomposition over the vector information symbols produced by a precoder shows that half of the information symbols are zeros and the rest are either √2- or √2. Then, we have the peak power and PAPR reduced by 10log1002=3dB at most compared with the precoded OFDM system. Finally, we compare PAPR of the proposed OFDM system with the precoded OFDM and the conventional OFDM system.展开更多
基金National Natural Science Foundation of China,Open Research Fund of National Mobile Communications Research Laboratory of Southeast University,Qing Lan Project of Jiangsu Province,the Fundamental Research Funds for the Central Universities,Research Founding of Graduate Innovation Center in NUAA,Innovation Fund of College of Electronic and Information Engineering of NUAA
文摘Discrete-rate adaptive modulation (AM) scheme for distributed antenna system (DAS) with imperfect channel state information (CSI) is developed, and the corresponding performance is investigated in composite Rayleigh channel. Subject to target bit error rate (BER) constraint, an improved fixed switching threshold (FST) for the AM scheme is presented by means of tightly-approximate BER expression, and it can avoid the performance loss fxom conventional FST. Based on the imperfect CSI, the variable switching threshold (VST) is derived by utilizing the maximum a posteriori method. This VST includes the improved FST as a special case, and may lower the impact of estimation error on the performance. By the switching thresholds, the spectrum efficiency (SE) and average BER of the system are respectively derived, and resulting closed- form expressions are attained. With these expressions, the system performance can be effectively evaluated. Simulation results show that the derived theoretical SE and BER can match the simulations well. Moreover, the AM with the presented FST has higher SE than that with the conventional one, and the AM with VST can tolerate the large estimation error while maintaining the target BER.
文摘The performance of OFDM systems may be degraded when intersymbol interference (ISI) channels have spectral nulls. Recently, the precoded OFDM was proposed to combat this problem. However, due to inserting (M- K) zeros between each two sets of K consecutive information symbols, the average transmitting power of the precoded OFDM system reduces by 10log10(M/K) dB compared with the conventional OFDM system. Under the same points inverse fast Fourier transformation (IFFF), the precoded OFDM system has a higher peak-to-average power ratio (PAPR) compared with the conventional OFDM system. This paper proposes a novel precoded BPSK-OFDM system based on Haar wavelet transformation. The Haar wavelet transformation operating decomposition over the vector information symbols produced by a precoder shows that half of the information symbols are zeros and the rest are either √2- or √2. Then, we have the peak power and PAPR reduced by 10log1002=3dB at most compared with the precoded OFDM system. Finally, we compare PAPR of the proposed OFDM system with the precoded OFDM and the conventional OFDM system.