According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the def...According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
文摘According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.