An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In...A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60774062)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070213061)Young Excellent Talents in Harbin Institute of Technology (Grant No.HITQNJS.2007.001)
文摘A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design approach, the attitude control and the vibration suppression sub-systems are designed separately using the lower order model. The design of attitude controller is based on the variable structure control (VSC) theory leading to a discontinuous control law. This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system. To actively suppress the flexible vibrations, the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages. In addition, a special configuration of actuators for three-axis attitude control is also investigated: the pitch attitude controlled by a momentum wheel, and the roll/yaw control achieved by on-off thrusters, which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history. Numerical simulations performed show that the rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque and parameter uncertainty.