Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transv...Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy.展开更多
This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformatio...This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformations of the Precambrian rock are strong. The orientation of the maximum principal stress inferred from the minimum magnetic susceptibility is nearly S-N, NE-SW and NW-SE. The Flinn diagram of the magnetic fabrics show that the strain pattern is oblate and constrictional type. Magnetic foliation of great majority of rock samples is well developed and the magnetic lineation is poor and the magnetic susceptibility ellipsoid is flattened. The magnetic lineation of the minority rock samples is well developed and the magnetic foliation is poor and the magnetic susceptibility ellipsoid is prolate. According to the geological field and the magnetic fabrics, there are 3 times tectonic stress field in SN directed extruding, NW-SE directed extruding, NW-SE directed extension. It shows that the Nyalam area has undergone process the orientation of SN, NW-SE nappe structure and NW-SE directed extension structure. The change of tectonic stress is reflected by the field characteristics of the Precambrian rock magnetic fabrics that is the direct responding result of the arc-continental, continent-continental collision between the India and Asian continents in the late part of the Late Cretaceous to Late Eocene and subsequently shifted to intra-continental convergent, the plateau uplifting and extension structure stage since the Late Eocene.展开更多
Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element m...Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.展开更多
The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxi...The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse.展开更多
The main old lands in China include the North China Block(NCB),South China Block(SCB)and Tarim Block(TRB),all of which have individual tectonic evolving histories.The NCB experienced complex geological evolution since...The main old lands in China include the North China Block(NCB),South China Block(SCB)and Tarim Block(TRB),all of which have individual tectonic evolving histories.The NCB experienced complex geological evolution since the early Precambrian onwards,and carries important records from the old continental nuclei,giant crustal growth episode and cratonization(stabilitization),then to the Paleoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxygen Event(GOE),and to the Late Paleoproterozoic-Neoproterozoic multi-stage rifting representing North China platform tectonic features.The TRB has two-layer basement of the Early Precambrian metamorphic complexes and Neoproterozoic sedimentary sequences.Three till sheets have been reported.The SCB consists of the Yangtze Block(YZB)and Cathaysia Block(CTB)that were cohered in the Neoproterozoic.The YZB recorded tectonic processes of the Early Precambrian crustal growth,1.0–0.9 Ga and 0.8–0.6 Ga metamorphic-magmatic events,and two Neoproterozoic glaciations.The CTB consists of ca.1.8Ga,1.0 to 0.9 Ga and ca.0.8 Ga granitic gneisses and metamorphic rocks,indicating there was a vast Precambrian basement.The Neoproterozoic sedimentary rocks overlie partly on the basement.That the YZB and CTB have a Neoproterozoic uniform cover layer illustrates the SCB should form,at least,during 1.0–0.9 Ga,corresponding to the Rodinia Supercontinent.The Central Chinese Orogenic System with high-ultra-high-pressure metamorphic rocks supports a suggestion that the abovementioned three old lands were collided to assemble a unified Chinese Continent during the Pangea orogenic period.展开更多
A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-bas...A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-basalt by SHRIMP analysis is463.3±4.7 Ma,suggesting that this lava formed in the Middle Ordovician,and is consistent with that of the meta-basic rocks in the Taoxing Lake and Guoganjianian Mountain ophiolite found in the Qiangtang plate.As this lava system bears similar geochemistry to N-MORB,it might be a component of ophiolite that represents the trail of the extinction of the Proto-Tethys,suggesting that the formation of Proto-Tethys oceanic basin in the Longmu Co-Shuanghu suture zone could date as far back as to the Middle Ordovician.Isotopic geochemical analysis indicates that the magma source area consists of both depleted mantle(DM)and enriched mantle(EMII)end members and bears Dupal anomaly,similar to that of the Paleo-Tethys in the Neo-Tethys represented by the Yarlung-Tsangpo suture zone,the Paleo-Tethys represented by the Changning-Menglian suture zone,and the Paleo-Tethys in Sanjiang region.This suggests that they have inherited the attribute of the Proto-Tethys mantle domain,and the Longmu Co-Shuanghu suture zone may be a representative of the northern boundary of Gondwana.展开更多
基金Program(2011CB710601) supported by National Basic Research Program of ChinaProject(50925933) supported by National Natural Science Foundation of China+1 种基金Project(2008BAB29B03) supported by National Key Technology Research and Development Program of ChinaProject(2010-122-011) supported by Guizhou Provincial Department of Transportation,China
文摘Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy.
基金Acknowledgements This work was supported by China Geological Survey (Grant No. H45C004002, 1212010784007) and the Project of the National Natural Science Foundation of China (Grant No. 40272012).
文摘This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformations of the Precambrian rock are strong. The orientation of the maximum principal stress inferred from the minimum magnetic susceptibility is nearly S-N, NE-SW and NW-SE. The Flinn diagram of the magnetic fabrics show that the strain pattern is oblate and constrictional type. Magnetic foliation of great majority of rock samples is well developed and the magnetic lineation is poor and the magnetic susceptibility ellipsoid is flattened. The magnetic lineation of the minority rock samples is well developed and the magnetic foliation is poor and the magnetic susceptibility ellipsoid is prolate. According to the geological field and the magnetic fabrics, there are 3 times tectonic stress field in SN directed extruding, NW-SE directed extruding, NW-SE directed extension. It shows that the Nyalam area has undergone process the orientation of SN, NW-SE nappe structure and NW-SE directed extension structure. The change of tectonic stress is reflected by the field characteristics of the Precambrian rock magnetic fabrics that is the direct responding result of the arc-continental, continent-continental collision between the India and Asian continents in the late part of the Late Cretaceous to Late Eocene and subsequently shifted to intra-continental convergent, the plateau uplifting and extension structure stage since the Late Eocene.
基金financially supported by a grant from China Natural Science foundation (51379112,51422904)the National Program on Key Basic Research Project of China (973 Program)(2013CB036002)the National Natural Science Foundation of China (51309144)
文摘Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.
基金supported by National Natural Science Foundation of China (Grant Nos. 90714004,40828001,41072162)
文摘The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse.
基金supported by the National Basic Research Program of China(Grant No.2012CB4166006)the National Natural Science Foundation of China(Grant Nos.41030316 and 41210003)
文摘The main old lands in China include the North China Block(NCB),South China Block(SCB)and Tarim Block(TRB),all of which have individual tectonic evolving histories.The NCB experienced complex geological evolution since the early Precambrian onwards,and carries important records from the old continental nuclei,giant crustal growth episode and cratonization(stabilitization),then to the Paleoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxygen Event(GOE),and to the Late Paleoproterozoic-Neoproterozoic multi-stage rifting representing North China platform tectonic features.The TRB has two-layer basement of the Early Precambrian metamorphic complexes and Neoproterozoic sedimentary sequences.Three till sheets have been reported.The SCB consists of the Yangtze Block(YZB)and Cathaysia Block(CTB)that were cohered in the Neoproterozoic.The YZB recorded tectonic processes of the Early Precambrian crustal growth,1.0–0.9 Ga and 0.8–0.6 Ga metamorphic-magmatic events,and two Neoproterozoic glaciations.The CTB consists of ca.1.8Ga,1.0 to 0.9 Ga and ca.0.8 Ga granitic gneisses and metamorphic rocks,indicating there was a vast Precambrian basement.The Neoproterozoic sedimentary rocks overlie partly on the basement.That the YZB and CTB have a Neoproterozoic uniform cover layer illustrates the SCB should form,at least,during 1.0–0.9 Ga,corresponding to the Rodinia Supercontinent.The Central Chinese Orogenic System with high-ultra-high-pressure metamorphic rocks supports a suggestion that the abovementioned three old lands were collided to assemble a unified Chinese Continent during the Pangea orogenic period.
基金supported by the Bangonghu-Nujiang Fundamental Geology Comprehensive Research Program(Grant No.1212011086068)Geological Comparison Program of Tibetan Plateau with Its Neighboring Tethys(Grant No.1212011121256)National Natural Science Foundation of China(Grant Nos.41303043&41273047)
文摘A small-sized meta-basic rock system is discovered in Qilongwuru Gully of Central Qiangtang’s Shuanghu region and contains a meta-basalt and garnet-bearing plagioclase amphibolite.The zircon U/Pb age of this meta-basalt by SHRIMP analysis is463.3±4.7 Ma,suggesting that this lava formed in the Middle Ordovician,and is consistent with that of the meta-basic rocks in the Taoxing Lake and Guoganjianian Mountain ophiolite found in the Qiangtang plate.As this lava system bears similar geochemistry to N-MORB,it might be a component of ophiolite that represents the trail of the extinction of the Proto-Tethys,suggesting that the formation of Proto-Tethys oceanic basin in the Longmu Co-Shuanghu suture zone could date as far back as to the Middle Ordovician.Isotopic geochemical analysis indicates that the magma source area consists of both depleted mantle(DM)and enriched mantle(EMII)end members and bears Dupal anomaly,similar to that of the Paleo-Tethys in the Neo-Tethys represented by the Yarlung-Tsangpo suture zone,the Paleo-Tethys represented by the Changning-Menglian suture zone,and the Paleo-Tethys in Sanjiang region.This suggests that they have inherited the attribute of the Proto-Tethys mantle domain,and the Longmu Co-Shuanghu suture zone may be a representative of the northern boundary of Gondwana.