The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociatio...The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.展开更多
Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) has become a powerful tool for analyzing the detailed composition of petroleum samples. However, the correlation between the numerous peaks obtain...Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) has become a powerful tool for analyzing the detailed composition of petroleum samples. However, the correlation between the numerous peaks obtained by FT-ICR MS and bulk properties of petroleum samples is still a challenge. In this study, the internal standard method was applied for the quantitative analysis of four straight-run vacuum gas oils(VGO) by atmospheric pressure photoionization(APPI) FT-ICR MS. The heteroatom class distribution of these VGO samples turned to be different when the concentration changed. Linear relationship between the normalized abundance and the concentration of VGO samples was identified for the total aromatic compounds, aromatic hydrocarbons, S1 and N1 species. The differences of the response factors were also discussed. The sulfur contents of a series of crude oils were proved to be linear with the FT-ICR MS data calibrated by the response factor of S1 species. This study demonstrated the feasibility of the internal standard method in quantitative analysis with APPI FT-ICR MS, and the bulk properties of petroleum samples could be correlated directly with the FT-ICR MS data.展开更多
Delayed coking is an important petroleum resid conversion process.The processability of coking liquids is known to be dependent on the heteroatom compounds present in the coking liquids.Eight commercial delayed coking...Delayed coking is an important petroleum resid conversion process.The processability of coking liquids is known to be dependent on the heteroatom compounds present in the coking liquids.Eight commercial delayed coking liquids were characterized by electrospray ionization(ESI)Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS)and gas chromatographic techniques.High relatively abundant heteroatom compounds in the coking liquids were 1-4 aromatic-ring pyridinic nitrogen compounds,carbazoles,benzocarbazoles,phenols,mercaptans,benzothiophenes,dibenzothiophenes,and naphthobenzothiophenes.Coking liquids derived from various feeds had similar compound class types,molecular weight distribution ranges,and double bond equivalents(DBE).However,the concentration of individual compounds and the distribution of DBE versus carbon number of heteroatom compounds varied.A comparison of heteroatom compounds in coker feeds and products revealed the various reaction mechanism of heteroatom compounds occurred during the coking process.The results suggested that molecular-level process models can be developed for optimization of unit operation to obtain desirable products that meet the environmental specifications and quality requirements.展开更多
基金supported by the Major State Basic Research Development Program of China (973 Program, No. 2012CB224801)
文摘The linkage of aromatic ring structures in vacuum residues was important for the refining process. The Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) combined with collision-induced dissociation(CID) is a powerful method to characterize the molecular structure of petroleum fractions. In this work, model compounds with different aromatic ring structures were measured by CID FT-ICR MS. The cracking of the parent ions and the generated fragment ions were able to distinguish different linkage of the model compounds. Then, vacuum residues were separated into saturates, aromatics, resins and asphaltenes fractions(SARA), and each fraction was characterized by CID technology. According to the experimental results, the aromatic rings in saturates and aromatics fractions were mainly of the island-type structures, while the aromatic rings in resins and asphaltenes fractions had a significant amount of archipelago-type structures.
基金supported by the Major State Basic Research Development Program of China(973 Program,No.2012CB224801)
文摘Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS) has become a powerful tool for analyzing the detailed composition of petroleum samples. However, the correlation between the numerous peaks obtained by FT-ICR MS and bulk properties of petroleum samples is still a challenge. In this study, the internal standard method was applied for the quantitative analysis of four straight-run vacuum gas oils(VGO) by atmospheric pressure photoionization(APPI) FT-ICR MS. The heteroatom class distribution of these VGO samples turned to be different when the concentration changed. Linear relationship between the normalized abundance and the concentration of VGO samples was identified for the total aromatic compounds, aromatic hydrocarbons, S1 and N1 species. The differences of the response factors were also discussed. The sulfur contents of a series of crude oils were proved to be linear with the FT-ICR MS data calibrated by the response factor of S1 species. This study demonstrated the feasibility of the internal standard method in quantitative analysis with APPI FT-ICR MS, and the bulk properties of petroleum samples could be correlated directly with the FT-ICR MS data.
基金supported by the National Natural Science Foundation of China(U1162204,21236009,21376262)
文摘Delayed coking is an important petroleum resid conversion process.The processability of coking liquids is known to be dependent on the heteroatom compounds present in the coking liquids.Eight commercial delayed coking liquids were characterized by electrospray ionization(ESI)Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS)and gas chromatographic techniques.High relatively abundant heteroatom compounds in the coking liquids were 1-4 aromatic-ring pyridinic nitrogen compounds,carbazoles,benzocarbazoles,phenols,mercaptans,benzothiophenes,dibenzothiophenes,and naphthobenzothiophenes.Coking liquids derived from various feeds had similar compound class types,molecular weight distribution ranges,and double bond equivalents(DBE).However,the concentration of individual compounds and the distribution of DBE versus carbon number of heteroatom compounds varied.A comparison of heteroatom compounds in coker feeds and products revealed the various reaction mechanism of heteroatom compounds occurred during the coking process.The results suggested that molecular-level process models can be developed for optimization of unit operation to obtain desirable products that meet the environmental specifications and quality requirements.