This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging...This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging to the path invariant algebraic difference form of a non-linear growth function, were also tested and compared. These models can be used to predict future basal area as a function of stand variables like dominant height and stem number per hectare and are necessary for reviewing different silvicultural treatment options. Data from 22 sample plots were used for modelling. An all possible growth intervals data structure was used. Both, qualitative and quantitative criteria were used to compare alternative models. The Akaike's information criteria differ- ence statistic was used to analyze the predictive ability of the models. Results show that the model proposed by Hui and Gadow performed best and hence this model is recommended for use in predicting basal area development in 12 undulata plantations in the study area. The data used were not from thinned stands, and hence the models may be less accurate when used for predictions when natural mortality is very significant.展开更多
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this...Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.展开更多
According to the different types and characteristics of satellite fault,a kind of fault diagnosis method is proposed,which integrates multivariate threshold,model-based and fault tree-based method.In order to optimize...According to the different types and characteristics of satellite fault,a kind of fault diagnosis method is proposed,which integrates multivariate threshold,model-based and fault tree-based method.In order to optimize the fault diagnosis method,it takes the advantages and remedy of a defect with other methods.This can diagnose many kinds of satellite fault occurring in the on-orbit phase rapidly and accurately.Besides,it can analyze the damage degree of the failure and establish the measures to eliminate the failure.展开更多
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized in...An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.展开更多
Trajectory optimization and simulation is performed for Venus round trip (VeRT) mission using solar sail propulsion. Solar gravity is included but atmospheric drag and shadowing effects are neglected in the planet-cen...Trajectory optimization and simulation is performed for Venus round trip (VeRT) mission using solar sail propulsion. Solar gravity is included but atmospheric drag and shadowing effects are neglected in the planet-centered escape and capture stages. The spacecraft starts from the Geostationary orbit (GEt) at a predetermined time to prepare a good initial condition for the Earth-Venus transfer, although the launch window is not an issue for spacecraft with solar sails. The Earth-Venus phase and the return trip are divided into three segments. Two methods are adopted to maintain the mission trajectory for the VeRT mis- sion and then compared through a numerical simulation. According to the first approach, Planet-centered and heliocentric ma- neuvers are modeled using a set of blended analytical control laws instead of the optimal control techniques. The second pro- cedure is the Direct Attitude Angle Optimization in which the attitude angles of the solar sail are adopted as the optimization variables during the heliocentric transfer. Although neither of the two methods guarantees a globally optimal trajectory, they are more efficient and will produce a near-optimal solution if employed properly. The second method has produced a better result for the minimum-time transfer of the VeRT mission demonstrating the effectiveness of the methods in the preliminary design of the complex optimal interplanetary orbit transfers.展开更多
Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patch...Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.展开更多
In this paper, we investigate topological phases of a-graphyne with tight-binding method. By calculating the topological invariant Z2 and the edge states, we identify topological insulators. We present the phase diagr...In this paper, we investigate topological phases of a-graphyne with tight-binding method. By calculating the topological invariant Z2 and the edge states, we identify topological insulators. We present the phase diagrams of a-graphyne with different filling fractions as a function of spin-orbit interaction and the nearest-neighbor hopping energy. We find there exist topological insulators in a-graphyne. We analyze and discuss the characteristics of topological phases of a-graphyne.展开更多
An M/G/1 retrial queue with a first-come-first-served (FCFS) orbit,general retrial time,two-phase service and server breakdown is investigated in this paper.Customers are allowed to balkand renege at particular times....An M/G/1 retrial queue with a first-come-first-served (FCFS) orbit,general retrial time,two-phase service and server breakdown is investigated in this paper.Customers are allowed to balkand renege at particular times.Assume that the customers who find the server busy are queued inthe orbit in accordance with an FCFS discipline.All customers demand the first 'essential' service,whereas only some of them demand the second 'optional' service,and the second service is multi-optional.During the service,the server is subject to breakdown and repair.Assume that the retrialtime,the service time,and the repair time of the server are all arbitrarily distributed.By using thesupplementary variables method,the authors obtain the steady-state solutions for both queueing andreliability measures of interest.展开更多
基金the State Forest Department,Rajasthan for providing financial support for conducting this study and to their officials for rendering necessary assistance during fieldwork
文摘This paper presents equations for estimating limiting stand density for Z undulata plantations grown in hot desert areas of Raj asthan State in India. Five different stand level basal area projection models, belonging to the path invariant algebraic difference form of a non-linear growth function, were also tested and compared. These models can be used to predict future basal area as a function of stand variables like dominant height and stem number per hectare and are necessary for reviewing different silvicultural treatment options. Data from 22 sample plots were used for modelling. An all possible growth intervals data structure was used. Both, qualitative and quantitative criteria were used to compare alternative models. The Akaike's information criteria differ- ence statistic was used to analyze the predictive ability of the models. Results show that the model proposed by Hui and Gadow performed best and hence this model is recommended for use in predicting basal area development in 12 undulata plantations in the study area. The data used were not from thinned stands, and hence the models may be less accurate when used for predictions when natural mortality is very significant.
基金Under the auspices of National Key Research and Development Program(No.2016YFC0500203)National Natural Science Foundation of China(No.41571427)
文摘Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.
文摘According to the different types and characteristics of satellite fault,a kind of fault diagnosis method is proposed,which integrates multivariate threshold,model-based and fault tree-based method.In order to optimize the fault diagnosis method,it takes the advantages and remedy of a defect with other methods.This can diagnose many kinds of satellite fault occurring in the on-orbit phase rapidly and accurately.Besides,it can analyze the damage degree of the failure and establish the measures to eliminate the failure.
基金the National Natural Science Foundation of China (Grant Nos. 10974179 and 61178016)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090073)the Key Project of the Education Commission of Zhejiang Province of China (Grant No.Z201120128)
文摘An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
基金supported by the National Postdoctoral Science Foundation of China (Grants No. 20110491873)the Foundation of State Key Laboratory of Astronautic Dynamics (Grants No. 2011ADL-DW0201)
文摘Trajectory optimization and simulation is performed for Venus round trip (VeRT) mission using solar sail propulsion. Solar gravity is included but atmospheric drag and shadowing effects are neglected in the planet-centered escape and capture stages. The spacecraft starts from the Geostationary orbit (GEt) at a predetermined time to prepare a good initial condition for the Earth-Venus transfer, although the launch window is not an issue for spacecraft with solar sails. The Earth-Venus phase and the return trip are divided into three segments. Two methods are adopted to maintain the mission trajectory for the VeRT mis- sion and then compared through a numerical simulation. According to the first approach, Planet-centered and heliocentric ma- neuvers are modeled using a set of blended analytical control laws instead of the optimal control techniques. The second pro- cedure is the Direct Attitude Angle Optimization in which the attitude angles of the solar sail are adopted as the optimization variables during the heliocentric transfer. Although neither of the two methods guarantees a globally optimal trajectory, they are more efficient and will produce a near-optimal solution if employed properly. The second method has produced a better result for the minimum-time transfer of the VeRT mission demonstrating the effectiveness of the methods in the preliminary design of the complex optimal interplanetary orbit transfers.
基金supported by the Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory (Grant No.2012afdl005)
文摘Point return orbit(PRO) of manned lunar mission is constrained by both lunar parking orbit and reentry corridor associated with reentry position.Besides,the fuel consumption and flight time should be economy.The patched conic equations which are adaptive to PRO are derived first,the PRO is modeled with fuel and time constraints based on the design variables of orbit parameters with clear physical meaning.After that,by combining analytical method with numerical method,a serial orbit design strategy from initial value design to precision solution is proposed.Simulation example indicates that the method has excellent convergence performance and precision.According to a great deal of simulation results by the method,the PRO characteristics such as Moon centered orbit parameters,Earth centered orbit parameters,transfer velocity change,etc.are analyzed,which can supply references to the manned lunar mission orbit scheme.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11004028 and 11274061
文摘In this paper, we investigate topological phases of a-graphyne with tight-binding method. By calculating the topological invariant Z2 and the edge states, we identify topological insulators. We present the phase diagrams of a-graphyne with different filling fractions as a function of spin-orbit interaction and the nearest-neighbor hopping energy. We find there exist topological insulators in a-graphyne. We analyze and discuss the characteristics of topological phases of a-graphyne.
基金supported by the National Natural Science Foundation of China under Grant No. 10871020
文摘An M/G/1 retrial queue with a first-come-first-served (FCFS) orbit,general retrial time,two-phase service and server breakdown is investigated in this paper.Customers are allowed to balkand renege at particular times.Assume that the customers who find the server busy are queued inthe orbit in accordance with an FCFS discipline.All customers demand the first 'essential' service,whereas only some of them demand the second 'optional' service,and the second service is multi-optional.During the service,the server is subject to breakdown and repair.Assume that the retrialtime,the service time,and the repair time of the server are all arbitrarily distributed.By using thesupplementary variables method,the authors obtain the steady-state solutions for both queueing andreliability measures of interest.