Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence...Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.展开更多
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ...For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.展开更多
In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α t...In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.展开更多
In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness...In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.展开更多
In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical...In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.展开更多
This paper presents an electronic VSD (variable speed drive) for three-phase IM (induction motor) using a microcontroller. The VSD is designed for cooling applications where the 1M is coupled to a cooling fan. The...This paper presents an electronic VSD (variable speed drive) for three-phase IM (induction motor) using a microcontroller. The VSD is designed for cooling applications where the 1M is coupled to a cooling fan. The drive receives temperature feedback from objects to be cooled and output a corresponding frequency to the IM. A prototype of the VSD is constructed to control a 175 W, four pole, squirrel cage three-phase IM. The heart of the control circuit is a low-cost microchip's PICI6F777 microcontroller which is programmed using C language to generate variable frequency SPWM (sinusoidal pulse width modulation) switching signals. These switching signals are fed to an 1GBT inverter. The VSD constructed can be switched between two modes of speed control" automatic temperature-controlled mode and manual user-controlled mode. Cost savings using the prototype are demonstrated.展开更多
The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to th...The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.展开更多
A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing th...A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing the criteria, it was determined that the correct model is the compressible choked flow for the helium-gas coolant under the normal operating conditions in the Tokamak fusion reactors. The upper bound leakage rates through metallic wall for two crack sizes were calculated. The calculated maximum numbers of allowable cracks through metallic and silicon-carbon composite wall were also reported. The experimental data of specimen S-23 (the small crack size), checked with the predicted or calculated leakage rate. But the experimental data of specimen S-4 (the large crack size, which is only 4.4 times larger than the crack size of specimen S-23) were two orders of magnitude higher than the calculated value. This is probably due to the many through-cracks undetected and therefore, not reported in the experiment, and not due to the difference in crack sizes. It should be noted that since there are only two test data points, it is recommended that more testing or experimental data will be needed. The results of two previous investigations about the calculated leakage values, their equations used, and their flow models employed were also reviewed. It is concluded that the correct model for the analysis is the compressible choked flow, and that helium can be as an effective coolant for fusion power reactors. Several recommendations are also made. Specifically, more experiments for helium, and similar analysis and experiments for lithium and water coolant are needed; and should be encouraged.展开更多
The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is es...The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is essential for commercializing the dual-cooled nuclear reactor. In this paper, the turbulent flow in square arrayed six-rod bundles in the form of magnified copies of the dual-cooled and current OPR-1000 nuclear reactor is experimentally investigated by means of hot-wire anemometry and smoke-wire generation methods. Vortex trains which do not exist in an ordinary reactor subchannel are presented in the subchannel of the dual-cooled reactor. The vortices are induced by a span-wise velocity gradient. This flow pulsation phenomenon increases the inter-channel mixing of the subchannel. To understand the periodic feature of the pulsation, axial/cross velocities are measured and the periodic characteristic frequencies are obtained by a Fast Fourier Transform (FFT) analysis. The peak frequency that represents the quasi-periodic pulsation of the flow is increased with an increase in the axial velocity while the wavelength of the pulsation remains constant within a tested range of the Reynolds number (9000 51000). The vortex trains are highly synchronized with each other, as confirmed by means of visualization.展开更多
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProjects (HEUCFR1132, HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.
基金Project(2011CB610403)support by the National Basic Research Program of ChinaProjects(51134011,51431008)supported by the National Natural Science Foundation of China+1 种基金Project(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(51125002)supported by the National Funds for Distinguished Young Scientists of China
文摘For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.
基金Project(J51504) supported by Shanghai Leading Academic Discipline Project,China
文摘In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.
文摘In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.
文摘In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.
文摘This paper presents an electronic VSD (variable speed drive) for three-phase IM (induction motor) using a microcontroller. The VSD is designed for cooling applications where the 1M is coupled to a cooling fan. The drive receives temperature feedback from objects to be cooled and output a corresponding frequency to the IM. A prototype of the VSD is constructed to control a 175 W, four pole, squirrel cage three-phase IM. The heart of the control circuit is a low-cost microchip's PICI6F777 microcontroller which is programmed using C language to generate variable frequency SPWM (sinusoidal pulse width modulation) switching signals. These switching signals are fed to an 1GBT inverter. The VSD constructed can be switched between two modes of speed control" automatic temperature-controlled mode and manual user-controlled mode. Cost savings using the prototype are demonstrated.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan of China(Grant No. 2006BAE03A04)
文摘The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab.
文摘A fundamental analysis of helium-gas coolant leakage rate through first-wall cracks in Tokamak fusion reactors was made. Criteria for ascertaining the correct flow models were thoroughly investigated. After testing the criteria, it was determined that the correct model is the compressible choked flow for the helium-gas coolant under the normal operating conditions in the Tokamak fusion reactors. The upper bound leakage rates through metallic wall for two crack sizes were calculated. The calculated maximum numbers of allowable cracks through metallic and silicon-carbon composite wall were also reported. The experimental data of specimen S-23 (the small crack size), checked with the predicted or calculated leakage rate. But the experimental data of specimen S-4 (the large crack size, which is only 4.4 times larger than the crack size of specimen S-23) were two orders of magnitude higher than the calculated value. This is probably due to the many through-cracks undetected and therefore, not reported in the experiment, and not due to the difference in crack sizes. It should be noted that since there are only two test data points, it is recommended that more testing or experimental data will be needed. The results of two previous investigations about the calculated leakage values, their equations used, and their flow models employed were also reviewed. It is concluded that the correct model for the analysis is the compressible choked flow, and that helium can be as an effective coolant for fusion power reactors. Several recommendations are also made. Specifically, more experiments for helium, and similar analysis and experiments for lithium and water coolant are needed; and should be encouraged.
基金carried out under the Nuclear R&D Program supported by the Ministry of Education, Science and Technology of the Republic of Korea (Grant No. NRF-2012M2A8A5025824)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant No. 2012-0005727)
文摘The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is essential for commercializing the dual-cooled nuclear reactor. In this paper, the turbulent flow in square arrayed six-rod bundles in the form of magnified copies of the dual-cooled and current OPR-1000 nuclear reactor is experimentally investigated by means of hot-wire anemometry and smoke-wire generation methods. Vortex trains which do not exist in an ordinary reactor subchannel are presented in the subchannel of the dual-cooled reactor. The vortices are induced by a span-wise velocity gradient. This flow pulsation phenomenon increases the inter-channel mixing of the subchannel. To understand the periodic feature of the pulsation, axial/cross velocities are measured and the periodic characteristic frequencies are obtained by a Fast Fourier Transform (FFT) analysis. The peak frequency that represents the quasi-periodic pulsation of the flow is increased with an increase in the axial velocity while the wavelength of the pulsation remains constant within a tested range of the Reynolds number (9000 51000). The vortex trains are highly synchronized with each other, as confirmed by means of visualization.