In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The ...In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).展开更多
The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat...The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.展开更多
Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are ...Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.展开更多
The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain r...The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain rate has some influences on the mechanical properties and microstructure,but a slight influence on the texture.Overall,yield strength,ultimate tensile strength and elongation increase first,then remain unchanged,and finally increase with increasing strain rate.Independent of strain rate,microstructure in the vicinities of the fracture regions of all the specimens is composed of the slightly elongated grains.However,some differences in misorientation angle distributions can be observed.As strain rate increases,the low angle grain boundaries(LAGBs)increase first,and then decrease.Textures in the vicinities of the fracture regions are almost identical with increasing strain rate.展开更多
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de...In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.展开更多
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume...In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.展开更多
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have consi...Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.展开更多
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater...An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom...In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.展开更多
An extruded Mg-8Gd-4Y-1Nd-0.5Zr alloy was pre-heated at 470℃ for 1 h and subsequently compressed at 470℃ and two strain rates of 0.2 and 0.0003 s^-1. Microstructure, texture and mechanical properties of the alloy we...An extruded Mg-8Gd-4Y-1Nd-0.5Zr alloy was pre-heated at 470℃ for 1 h and subsequently compressed at 470℃ and two strain rates of 0.2 and 0.0003 s^-1. Microstructure, texture and mechanical properties of the alloy were examined by optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), hardness test and tensile test. The results show that the post-deformed microstructures of alloy are non-uniform at both strain rates due to the dissolution of RE-rich particles and the occurrence of DRX. The textures of post-deformed alloy are affected by strain rate. The alloy exhibits a strong basal texture of (0001)//ND (normal direction) after compression at 0.2 s^-1, while a weak texture component of (0001)//ED (extrusion direction) is formed in the compression obtained at 0.0003 s^-1. Compared with the alloy compressed at 0.0003 s^-1, the compressed alloy obtained at 0.2 s^-1 presents better comprehensive mechanical properties with the ultimate tensile strength of 426 MPa, yield strength of 345 MPa and ductility of 2.1% when being aged at 225℃ for 8 h.展开更多
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont...The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.展开更多
Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mec...Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.展开更多
The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and...The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and 5 s-1.It is observed that dynamic recrystallization(DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate.The relationship between material constants(Q,n,α and ln A) and strain is identified by the sixth order polynomial fit.The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified.Moreover,the critical characteristics of DRX are extracted from the stress-strain curves under different deformation conditions by linear regression.The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate.The kinetics of DRX increases with increasing deformation temperature or strain rate.展开更多
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t...In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.展开更多
The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of aci...The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.展开更多
The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and...The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and 10 s-t and the maximum deformation degree of 80%. The relationship between the flow stress and deformation temperature as well as strain rate was analyzed. The materials parameters and the apparent activation energy were calculated. The constitutive relationship was established with a Zener-Hollomon (Z) parameter. The results show that the flow stress increases with the increase of strain rate at a constant temperature, but it decreases with the increase of deformation temperature at a constant strain rate. The apparent activation energy is estimated to be 129-153 kJ/mol, which is close to that for self-diffusion of magnesium. The established constitutive relationship can reflect the change of flow stress during hot deformation.展开更多
基金Project(52202426)supported by the National Natural Science Foundation of ChinaProjects(15205723,15226424)supported by the Research Grants Council of the Hong Kong Special Administrative Region(SAR),China+1 种基金Project(K2021J041)supported by the Technology Research and Development Program of China RailwayProject(1-BD23)supported by The Hong Kong Polytechnic University,China。
文摘In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).
基金Project(50935007)supported by the National Natural Science Foundation of ChinaProject(2010CB731701)supported by the National Basic Research Program of China
文摘The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.
基金funded by the Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences (No. MSGL0606)the China National Natural Science Fundation (Ratification No. 40876018, 40476020)
文摘Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.
基金Project(TZ2018001)supported by the Science Challenge Project,ChinaProject(LQ17E010001)supported by the Zhejiang Provincial Natural Science Foundation,China+2 种基金Project(2019-Z02)supported by the State Key Lab of Advanced Metals and Materials,ChinaProject(2018A610174)supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.Wong Magna Fund from Ningbo University,China.
文摘The effects of strain rate on the mechanical properties,microstructure and texture of Al-Mg-Si-Cu alloy were investigated through tensile test,microstructure and texture characterization.The results show that strain rate has some influences on the mechanical properties and microstructure,but a slight influence on the texture.Overall,yield strength,ultimate tensile strength and elongation increase first,then remain unchanged,and finally increase with increasing strain rate.Independent of strain rate,microstructure in the vicinities of the fracture regions of all the specimens is composed of the slightly elongated grains.However,some differences in misorientation angle distributions can be observed.As strain rate increases,the low angle grain boundaries(LAGBs)increase first,and then decrease.Textures in the vicinities of the fracture regions are almost identical with increasing strain rate.
文摘In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.
基金Supported by Australia Research Council(No.DP0451966)
文摘In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.
基金Supported by National Natural Science Foundation of China(No.50525825)
文摘Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.
文摘An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.
文摘In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.
基金financial support from the Changsha University Talent Introduction Project (50800-92808)the Changsha Science and Technology Project (K1705055)support of the Advanced Characterization Facility in Waurn Ponds Campus of Deakin University, Geelong, Victoria, Australia
文摘An extruded Mg-8Gd-4Y-1Nd-0.5Zr alloy was pre-heated at 470℃ for 1 h and subsequently compressed at 470℃ and two strain rates of 0.2 and 0.0003 s^-1. Microstructure, texture and mechanical properties of the alloy were examined by optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), hardness test and tensile test. The results show that the post-deformed microstructures of alloy are non-uniform at both strain rates due to the dissolution of RE-rich particles and the occurrence of DRX. The textures of post-deformed alloy are affected by strain rate. The alloy exhibits a strong basal texture of (0001)//ND (normal direction) after compression at 0.2 s^-1, while a weak texture component of (0001)//ED (extrusion direction) is formed in the compression obtained at 0.0003 s^-1. Compared with the alloy compressed at 0.0003 s^-1, the compressed alloy obtained at 0.2 s^-1 presents better comprehensive mechanical properties with the ultimate tensile strength of 426 MPa, yield strength of 345 MPa and ductility of 2.1% when being aged at 225℃ for 8 h.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2011QNB05)the National Basic Research Program of China (No. 2007CB209400)+2 种基金the National Natural Science Foundation of China (Nos. 51074166 and 51104128)the Research Project for Ministry of Housing and Urban-Rural Development of China (No. 2011-K3-5)the Innovation Project of Graduate Students in Jiangsu Province (No. CX09B_108Z)
文摘The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.
基金financially supported by the Major Special Projects in Anhui Province,China(No.202003c08020005)the Key Projects in Hunan Province,China(No.2020GK2045)。
文摘Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%.
基金Project (51322405) supported by the National Natural Science Foundation of ChinaProject (CX2013B085) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The dynamic recrystallization behavior of high strength steel during hot deformation was investigated.The hot compression test was conducted in the temperature range of 950-1150 °C under strain rates of 0.1,1 and 5 s-1.It is observed that dynamic recrystallization(DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate.The relationship between material constants(Q,n,α and ln A) and strain is identified by the sixth order polynomial fit.The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified.Moreover,the critical characteristics of DRX are extracted from the stress-strain curves under different deformation conditions by linear regression.The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate.The kinetics of DRX increases with increasing deformation temperature or strain rate.
文摘In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(20136102120022)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(3102015ZY023)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.
基金Project supported by China-Canada-USA Collaborative Research and Development Project (Magnesium Front End Research and Development (MFERD))
文摘The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and 10 s-t and the maximum deformation degree of 80%. The relationship between the flow stress and deformation temperature as well as strain rate was analyzed. The materials parameters and the apparent activation energy were calculated. The constitutive relationship was established with a Zener-Hollomon (Z) parameter. The results show that the flow stress increases with the increase of strain rate at a constant temperature, but it decreases with the increase of deformation temperature at a constant strain rate. The apparent activation energy is estimated to be 129-153 kJ/mol, which is close to that for self-diffusion of magnesium. The established constitutive relationship can reflect the change of flow stress during hot deformation.