In the present paper,we study the effect of element substitution for quarter-filled nanoclusters of perovskite manganite by introducing Jahn-Teller type of perturbation interaction to the double-exchange Hamiltonian.U...In the present paper,we study the effect of element substitution for quarter-filled nanoclusters of perovskite manganite by introducing Jahn-Teller type of perturbation interaction to the double-exchange Hamiltonian.Using the unrestricted real-space Hartree-Fock approximation method we find that,the Jahn-Teller electron-phonon interaction plays the central role in producing the phase transition from ferromagnetic phase to CE type antiferromagnetic phase.Not only the Jahn-Teller interaction benefits antiferromagnetic correlation,it also increases the charge density order parameter.These theoretical results provide a guidance to predict the properties and modify the composition of particles of perovskite manganite under nano-scale.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50971011 and 10874003)the Beijing Natural Science Foundation (Grant No. 1102025)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110038)
文摘In the present paper,we study the effect of element substitution for quarter-filled nanoclusters of perovskite manganite by introducing Jahn-Teller type of perturbation interaction to the double-exchange Hamiltonian.Using the unrestricted real-space Hartree-Fock approximation method we find that,the Jahn-Teller electron-phonon interaction plays the central role in producing the phase transition from ferromagnetic phase to CE type antiferromagnetic phase.Not only the Jahn-Teller interaction benefits antiferromagnetic correlation,it also increases the charge density order parameter.These theoretical results provide a guidance to predict the properties and modify the composition of particles of perovskite manganite under nano-scale.