A unified plastic modulus parameter for the bounding surface plasticity model is introduced in order to maintain the identical responses of modeling for both the two-dimensional and three-dimensional stress space with...A unified plastic modulus parameter for the bounding surface plasticity model is introduced in order to maintain the identical responses of modeling for both the two-dimensional and three-dimensional stress space with the same model parameters. Also discussed are the influences of the plastic modulus parameter on the stress-strain relationship and the plastic modulus. The model is more sensitive in modeling the stress strain responses when the plastic modulus parameter is small. The plastic modulus parameter has a great influence on the magnitude of the plastic modulus, especially at the initial loading stage. The plastic modulus asymptotically tends to zero at the end of loading.展开更多
基金supported by the 111 Project(Grant No.B13024)the National Natural Science Foundation of China(Grant No.51509024)the Fundamental Research Funds for the Central Universities(Grant No.106112015CDJXY200008)
文摘A unified plastic modulus parameter for the bounding surface plasticity model is introduced in order to maintain the identical responses of modeling for both the two-dimensional and three-dimensional stress space with the same model parameters. Also discussed are the influences of the plastic modulus parameter on the stress-strain relationship and the plastic modulus. The model is more sensitive in modeling the stress strain responses when the plastic modulus parameter is small. The plastic modulus parameter has a great influence on the magnitude of the plastic modulus, especially at the initial loading stage. The plastic modulus asymptotically tends to zero at the end of loading.