Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th...Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.展开更多
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an ex...In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.展开更多
In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Bor...In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Borel-Cantelli Lemma holds. As corollaries, some moment conditions are obtained, under which the strong law of large numbers holds for sequences of identically distributed random variables.展开更多
基金Projects(61227006,61473206) supported by the National Natural Science Foundation of ChinaProject(13TXSYJC40200) supported by Science and Technology Innovation of Tianjin,China
文摘Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
基金The project supported by the Key Project of the Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金National Natural Science Foundation of China under Grant Nos.60372095 and 60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE07-001Beijing University of Aeronautics and Astronautics,and the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
文摘In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.
基金Supported by the SCR of Chongqing Municipal Education Commission(KJ090703)
文摘In this paper, we give some conditions on diverging rate of series of the probabilities and converging rate of series of the α-mixing coefficients for sequences of events, under which the conclusion of the Second Borel-Cantelli Lemma holds. As corollaries, some moment conditions are obtained, under which the strong law of large numbers holds for sequences of identically distributed random variables.