期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一个关于二次规划问题信赖域中可行下降算法 被引量:1
1
作者 童仕宽 肖新平 《武汉理工大学学报(交通科学与工程版)》 北大核心 2004年第5期732-735,共4页
采用变量消去法化二次规划问题 ,使用一个基于信赖域子问题的内点算法来获得其可行下降方向 ,提出了关于二次规划问题信赖域中可行下降的新算法 ,证明了算法具有全局收敛性 .计算实例表明 。
关键词 二次规划 变量消去法 信赖域子问题的内点算法
下载PDF
复数域上的机器定理证明
2
作者 韩旭华 任小康 周海燕 《西北师范大学学报(自然科学版)》 CAS 1998年第2期18-24,共7页
以吴方法和变量消去法为理论基础,给出了可用多项式方程组表示的定理的机器证明方法以及具体算法.
关键词 变量消去法 数学定理 复数域 机器证明
下载PDF
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification 被引量:4
3
作者 毛勇 皮道映 +1 位作者 刘育明 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期65-72,共8页
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i... Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 展开更多
关键词 variable selection support vector machine recursive feature elimination fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部