期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于变量迭代空间收缩法的土壤有机质含量高光谱快速检测
1
作者 王飞 《水利科技与经济》 2021年第11期8-12,共5页
高光谱被认为是检测土壤有机质含量(SOM)的一种快速方法。其准确度可与传统的实验室方法相媲美。然而,其海量的波段数据导致所建模型复杂且稳定性差。本研究旨在探讨变量迭代空间收缩法(VISSA)在土壤有机质高光谱检测中的有效性。从新... 高光谱被认为是检测土壤有机质含量(SOM)的一种快速方法。其准确度可与传统的实验室方法相媲美。然而,其海量的波段数据导致所建模型复杂且稳定性差。本研究旨在探讨变量迭代空间收缩法(VISSA)在土壤有机质高光谱检测中的有效性。从新疆吉木萨尔县采集土壤样品81份;用标准方法测量SOM,用ASD光谱仪扫描样品,获得光谱数据(350~2500 nm);对经竞争性自适应重加权算法(CARS)及变量迭代空间收缩法(VISSA)所选的光谱变量进行测试,并采用偏最小二乘回归(PLSR)估算SOM值。结果表明,VISSA筛选算法优于CARS筛选算法,VISSA算法可以去除大部分冗余波段,保留15.04%的波段变量;所构建的模型中,VISSA-PLSR最优,CARS-PLSR次之,全波段-PLSR最差;其中VISSA-PLSR模型达到有效定量预测土壤有机质含量的程度,其R_(p)^(2)可达0.91,RMSE_(P)仅为0.48 g/kg,RPD可达3.24。研究结果可为高光谱快速检测土壤有机质提供参考与借鉴。 展开更多
关键词 土壤有机质含量 变量空间收缩 竞争性自适应重加权算 高光谱
下载PDF
IVISSA算法冷鲜滩羊肉嫩度的高光谱模型优化 被引量:8
2
作者 刘贵珊 张翀 +3 位作者 樊奈昀 程丽娟 余江泳 袁瑞瑞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第8期2558-2563,共6页
高光谱成像可同时获取被检测对象的图像信息和光谱信息,并对其内部成分进行定性和定量分析。国内外学者采用高光谱对肉品品质的研究多集中在水分、菌落总数、色泽、 pH、挥发性盐基氮等方面,在肉品嫩度检测中应用区间变量迭代空间收缩... 高光谱成像可同时获取被检测对象的图像信息和光谱信息,并对其内部成分进行定性和定量分析。国内外学者采用高光谱对肉品品质的研究多集中在水分、菌落总数、色泽、 pH、挥发性盐基氮等方面,在肉品嫩度检测中应用区间变量迭代空间收缩法优选特征波长的研究鲜有报道。利用可见-近红外(400~1 000 nm)和近红外(900~1 700 nm)高光谱结合化学计量学方法对冷鲜滩羊肉嫩度进行无损预测,优选最佳建模波段。首先,采集羊肉的高光谱图像,提取样本感兴趣区域的光谱反射值,采用TA-XTplus质构仪测量滩羊肉嫩度;其次,将两个波段下的原始光谱数据进行多元散射校正(multiple scattering correction, MSC)、去趋势(de-trending)、基线校准(baseline)、标准正态变量(standard normal variable, SNV)、归一化(normalize)和卷积平滑(Savitzky-Golay)等预处理;分别采用连续投影算法(successive projection algorithm, SPA)、竞争性自适应加权算法(competitive adaptive reweighted sampling, CARS)、变量组合集群分析法(variables combination population analysis, VCPA)和区间变量迭代空间收缩法(interval variable iterative space shrinkage approach, IVISSA)对最佳预处理的光谱数据优选特征波长;最后,建立冷鲜滩羊肉嫩度的偏最小二乘回归(partial least squares regression, PLSR)预测模型,优选最佳建模波段。结果表明:(1)滩羊肉嫩度的近红外高光谱模型的预测效果优于可见-近红外高光谱;(2)经过多种预处理方法所建立的滩羊肉嫩度的模型中,近红外区域的原始光谱(original spectra, OS)模型效果最优,其Rc=0.83,Rp=0.79, RMSEC=874.94, RMSEP=1 465.97;(3)近红外高光谱的原始光谱经SPA, CARS, VCPA, IVISSA四种方法共挑选出15, 16, 13和123个特征波长,占总波长的7%, 6%, 5%和54%;(4)近红外高光谱结合OS-IVISSA-PLSR建立的冷鲜滩羊肉嫩度预测模型最好,其Rc=0.85,RMSEC=850.86,Rp=0.79, RMSEP=1 497.11。IVISSA算法不仅可大幅度减少模型运算次数,还可以保证模型的精准和稳定性。研究表明, OS-IVISSA-PLSR模型对冷鲜滩羊肉嫩度进行高光谱的快速无损检测是可行的。 展开更多
关键词 冷鲜滩羊肉 嫩度 高光谱成像技术 区间变量空间收缩 偏最小二乘回归
下载PDF
桦木顺纹抗压强度的SEPA-VISSA-RVM近红外光谱预测 被引量:1
3
作者 高礼彬 陈金浩 +1 位作者 张怡卓 王克奇 《林业工程学报》 CSCD 北大核心 2022年第1期52-58,共7页
木材顺纹抗压强度是评价木材力学性能的重要指标,而传统测量方法操作复杂、精确度低。以桦木为例,提出基于近红外光谱技术(NIR)的SEPA-VISSA-RVM木材顺纹抗压强度模型,实现对其更加精确的预测。试验选取100个木材试件,在900~1700 nm近... 木材顺纹抗压强度是评价木材力学性能的重要指标,而传统测量方法操作复杂、精确度低。以桦木为例,提出基于近红外光谱技术(NIR)的SEPA-VISSA-RVM木材顺纹抗压强度模型,实现对其更加精确的预测。试验选取100个木材试件,在900~1700 nm近红外光谱波段上采集数据并测量抗压强度真值;然后采用卷积平滑(SG)方法进行光谱预处理;使用采样误差分布分析(SEPA)作为变量空间迭代收缩算法(VISSA)的改进策略进行特征波长优选;最后通过粒子群优化算法(PSO)优化核函数参数并建立相关向量机(RVM)的预测模型。试验表明:在特征波长优选方面,以偏最小二乘法(PLS)建模为基础的SEPA-VISSA方法,其预测决定系数为0.9593,预测均方根误差为2.8995,相对分析误差为3.0256,光谱变量数由512减小到111个,占总波长的22%,均优于VCPA、CARS和VISSA算法;在建模预测方面,以SEPA-VISSA所选波长为基础的RVM模型,PSO优化的拉普拉斯(Laplacian)核函数的核宽度为10.4043,决定系数为0.9449,预测均方根误差为2.0432,相对分析误差为4.2936,预测效果优于PLS和SVR。因此,基于近红外光谱的SEPA-VISSA-RVM建模能够实现对桦木顺纹抗压强度更准确和稳定的无损检测。 展开更多
关键词 抗压强度 近红外光谱 变量空间迭代收缩法 采样误差分布分析 相关向量机 桦木
下载PDF
饲料中粗脂肪和粗纤维含量的近红外光谱快速分析 被引量:8
4
作者 郝勇 吴文辉 商庆园 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第1期215-220,共6页
采用近红外光谱(NIRS)结合偏最小二乘(PLS)方法,实现对饲料中粗脂肪和粗纤维的快速定量分析。采用Norris-Williams平滑求导(NW)和多元散射校正(MSC)方法对光谱进行预处理;蒙特卡罗无信息变量消除法(MCUVE)、变量组合集群分析法(VCPA)和... 采用近红外光谱(NIRS)结合偏最小二乘(PLS)方法,实现对饲料中粗脂肪和粗纤维的快速定量分析。采用Norris-Williams平滑求导(NW)和多元散射校正(MSC)方法对光谱进行预处理;蒙特卡罗无信息变量消除法(MCUVE)、变量组合集群分析法(VCPA)和区间变量迭代空间收缩法(iVISSA)用于光谱变量选择和优化;PLS用于光谱校正模型的建立,采用校正集相关系数(R_c)、交互验证均方根误差(RMSECV)、预测集相关系数(R_p)和预测集均方根误差(RMSEP)评价模型。光谱预处理中经MSC处理后的光谱模型优于其他预处理方法,其RMSECV和RMSEP值都减小,R_c和R_p值都增大。脂肪定量分析中,原始光谱模型的RMSECV和R_c为0.21和0.87, RMSEP和R_p为0.20和0.88,变量数(V_n)为1 501;经MCUVE方法选择变量后建立的定量模型,其RMSECV和R_c为0.17和0.92, RMSEP和R_p为0.19和0.89,V_n为400个;经VCPA选择变量建立PLS定量模型,其RMSECV和R_c为0.21和0.87, RMSEP和R_p为0.25和0.81,V_n为12;经iVISSA选择变量后的模型,其RMSECV和R_c为0.21和0.86, RMSEP和R_p为0.20和0.87,V_n为20。粗纤维定量分析中,原始模型的RMSECV和R_c为0.28和0.91, RMSEP和R_p为0.25和0.95,V_n为1 501;经MCUVE选择后的模型,其RMSECV和R_c为0.23和0.95, RMSEP和R_p为0.23和0.94,V_n为740;经VCPA选择变量后的模型,其RMSECV和R_c为0.27和0.91, RMSEP和R_p为0.30和0.91,V_n为11;经iVISSA选择后变量的模型,其RMSECV和R_c为0.29和0.90, RMSEP和R_p为0.27和0.93,V_n为20。结果表明, MSC方法可以有效提高光谱质量,消除光谱平移误差;MCUVE变量选择方法可以简化模型提高模型精度和稳定性,建立最优模型。在粗脂肪的定量分析模型中, MSC处理后的光谱经过MCUVE选择后剩余400个变量,R_c和R_p相较于全谱模型提高了0.05和0.01, RMSECV和RMSEP分别降低到了0.17和0.19;经VCPA和iVISSA选择变量的模型其结果与全谱模型相似,但其变量分别只有12和20个。在粗纤维模型中,经MCUVE选择后740个变量用于建立PLS模型,其R_c和R_p为0.95和0.94, RMSECV和RMSEP分别为0.23和0.23;VCPA和iVISSA分别运用11和12个变量建立回归模型,但结果都比MCUVE模型差。利用饲料近红外光谱建立MSC-MCUVE-PLS模型可以有效对饲料粗脂肪和粗纤维进行定量分析。 展开更多
关键词 近红外光谱 饲料 蒙特卡罗无信息变量消除 变量组合集群分析 区间变量空间收缩
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部