This paper presents a new design of robust optimal controller for multivariable system. The row characteristic functions of a linear multivariable system and dynamic decoupling of its equivalent system, were applied t...This paper presents a new design of robust optimal controller for multivariable system. The row characteristic functions of a linear multivariable system and dynamic decoupling of its equivalent system, were applied to change the transfer function matrix of a closed-loop system into a normal function matrix, so that robust H^∞ optimal stability is guaranteed. Furthermore, for the decoupled equivalent control system the I^∞ optimization approach is used to have the closed-loop system embody optimal time domain indexes. A successful application on a heater control system verified the excellence of the new control scheme.展开更多
A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different desi...A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different design and operating variables on plant performance and cost. Daily and seasonal variations of solar irradiation at different latitudes are considered, and an original approximate model for thermal stratification is included. Since a limited computational time is required, the simulation model can be effectively integrated with a non-linear constrained optimization procedure so as to determine the optimal choice of design variables for different locations and operating conditions. The comparison between a two-variable and four-variable optimization for five different locations at various latitudes has been presented, showing a significant decrease in pay-back time with latitude. Finally a sensitivity analysis on the most important design and operating variables has been performed and presented. It emerges that the optimal insulator thickness always decreases with latitude. The optimal tilt angle is slightly lower than latitude only when the plant is designed to cover the whole thermal load, while higher tilt values are selected in case of partial load covering.展开更多
The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines ...The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.展开更多
基金Project (No. 60274036) supported by the National Natural Science Foundation of China
文摘This paper presents a new design of robust optimal controller for multivariable system. The row characteristic functions of a linear multivariable system and dynamic decoupling of its equivalent system, were applied to change the transfer function matrix of a closed-loop system into a normal function matrix, so that robust H^∞ optimal stability is guaranteed. Furthermore, for the decoupled equivalent control system the I^∞ optimization approach is used to have the closed-loop system embody optimal time domain indexes. A successful application on a heater control system verified the excellence of the new control scheme.
文摘A thermo-economic model for the simulation and optimization of a CSHPSS (central solar heating plant with seasonal storage) is presented. The model, written in Matlab, allows to analyze the effects of different design and operating variables on plant performance and cost. Daily and seasonal variations of solar irradiation at different latitudes are considered, and an original approximate model for thermal stratification is included. Since a limited computational time is required, the simulation model can be effectively integrated with a non-linear constrained optimization procedure so as to determine the optimal choice of design variables for different locations and operating conditions. The comparison between a two-variable and four-variable optimization for five different locations at various latitudes has been presented, showing a significant decrease in pay-back time with latitude. Finally a sensitivity analysis on the most important design and operating variables has been performed and presented. It emerges that the optimal insulator thickness always decreases with latitude. The optimal tilt angle is slightly lower than latitude only when the plant is designed to cover the whole thermal load, while higher tilt values are selected in case of partial load covering.
文摘The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.