期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VFFRLS算法的锂电池参数辨识
被引量:
6
1
作者
朱卫平
陈国旺
+1 位作者
卫志农
宋兴涛
《电力工程技术》
北大核心
2023年第1期226-233,共8页
动力电池性能是影响电动汽车综合性能的关键因素,因此准确辨识锂离子电池模型的参数对后续电池系统的荷电状态估计和健康状态预测至关重要。为了提高锂离子电池模型参数辨识算法的精度,以磷酸铁锂电池作为研究对象,建立电池二阶RC等效...
动力电池性能是影响电动汽车综合性能的关键因素,因此准确辨识锂离子电池模型的参数对后续电池系统的荷电状态估计和健康状态预测至关重要。为了提高锂离子电池模型参数辨识算法的精度,以磷酸铁锂电池作为研究对象,建立电池二阶RC等效电路模型,并采用基于变量遗忘因子的最小二乘算法对锂离子电池模型进行在线参数辨识。通过搭建测试平台进行充放电实验,基于2种不同工况的实验数据,分别用文中算法、递推最小二乘算法和传统的带遗忘因子的最小二乘算法进行参数辨识,根据辨识结果估计出的端口电压与实验测试得到的实际值的误差比较来描述文中算法辨识结果的准确度。实验结果表明,基于变量遗忘因子的最小二乘算法在锂电池参数辨识方面表现出快速的收敛性和较高的估计精度。
展开更多
关键词
锂离子电池
模型参数
在线辨识
变量遗忘因子
二阶RC
最小二乘算法
下载PDF
职称材料
题名
基于VFFRLS算法的锂电池参数辨识
被引量:
6
1
作者
朱卫平
陈国旺
卫志农
宋兴涛
机构
国网江苏省电力有限公司
河海大学能源与电气学院
出处
《电力工程技术》
北大核心
2023年第1期226-233,共8页
基金
国家自然科学基金资助项目(U1966205)。
文摘
动力电池性能是影响电动汽车综合性能的关键因素,因此准确辨识锂离子电池模型的参数对后续电池系统的荷电状态估计和健康状态预测至关重要。为了提高锂离子电池模型参数辨识算法的精度,以磷酸铁锂电池作为研究对象,建立电池二阶RC等效电路模型,并采用基于变量遗忘因子的最小二乘算法对锂离子电池模型进行在线参数辨识。通过搭建测试平台进行充放电实验,基于2种不同工况的实验数据,分别用文中算法、递推最小二乘算法和传统的带遗忘因子的最小二乘算法进行参数辨识,根据辨识结果估计出的端口电压与实验测试得到的实际值的误差比较来描述文中算法辨识结果的准确度。实验结果表明,基于变量遗忘因子的最小二乘算法在锂电池参数辨识方面表现出快速的收敛性和较高的估计精度。
关键词
锂离子电池
模型参数
在线辨识
变量遗忘因子
二阶RC
最小二乘算法
Keywords
lithium-ion battery
model parameters
online identification
variable forgetting factor
second-order RC
least squa res algorithm
分类号
TM912 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VFFRLS算法的锂电池参数辨识
朱卫平
陈国旺
卫志农
宋兴涛
《电力工程技术》
北大核心
2023
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部