针对存在初态误差的情形,提出多变量非线性系统的变阶采样迭代学习控制方法.相对固定阶迭代学习算法,变阶算法可有效降低跟踪误差.对变阶采样迭代学习算法进行了收敛性分析,推导出收敛充分条件.给出了变阶学习的两种实现策略-DD(Direct ...针对存在初态误差的情形,提出多变量非线性系统的变阶采样迭代学习控制方法.相对固定阶迭代学习算法,变阶算法可有效降低跟踪误差.对变阶采样迭代学习算法进行了收敛性分析,推导出收敛充分条件.给出了变阶学习的两种实现策略-DD(Direct division)和DIP(Division in phases)策略.数值仿真表明,基于DIP策略的变阶采样迭代学习算法在获得较高的控制精度的同时,具有较快的收敛速度.展开更多
文摘针对存在初态误差的情形,提出多变量非线性系统的变阶采样迭代学习控制方法.相对固定阶迭代学习算法,变阶算法可有效降低跟踪误差.对变阶采样迭代学习算法进行了收敛性分析,推导出收敛充分条件.给出了变阶学习的两种实现策略-DD(Direct division)和DIP(Division in phases)策略.数值仿真表明,基于DIP策略的变阶采样迭代学习算法在获得较高的控制精度的同时,具有较快的收敛速度.