An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th...An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zo...Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zone is characterized by an abnormal decrease during E1 Nifio events. Such an NPP decrease may be related to E1 Nifio-driven anomalous summertime weak wind. During the summer following E1 Nifio, the anomalous northeasterly wind forced by southwest Indian Ocean warming weakens the southwest monsoon and warms the Arabian Sea. The abnormal wind weakens the coastal Ekman transport, offshore Ekman pumping and horizontal advection, resulting in reduced upward nutrient supply to the euphotic zone. A slightly declining trend in NPP after 2000 associated with a gradual decrease in surface monsoon winds is discussed.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50378041) the Specialized Research Fund for the Doctoral Program ofHigher Education (Grant No. 20030487016).
文摘An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, LYQY200807)the National Natural Science Foundation of China (Nos. 40876093, 41176162)
文摘Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zone is characterized by an abnormal decrease during E1 Nifio events. Such an NPP decrease may be related to E1 Nifio-driven anomalous summertime weak wind. During the summer following E1 Nifio, the anomalous northeasterly wind forced by southwest Indian Ocean warming weakens the southwest monsoon and warms the Arabian Sea. The abnormal wind weakens the coastal Ekman transport, offshore Ekman pumping and horizontal advection, resulting in reduced upward nutrient supply to the euphotic zone. A slightly declining trend in NPP after 2000 associated with a gradual decrease in surface monsoon winds is discussed.