A scheme for designing one-dimensional (1-D) convolution window of the circularly symmetric Gabor filter which is directly obtained from frequency domain is proposed. This scheme avoids the problem of choosing the sam...A scheme for designing one-dimensional (1-D) convolution window of the circularly symmetric Gabor filter which is directly obtained from frequency domain is proposed. This scheme avoids the problem of choosing the sampling frequency in the spatial domain, or the sampling frequency must be determined when the window data is obtained by means of sampling the Gabor function, the impulse response of the Gabor filter. In this scheme, the discrete Fourier transform of the Gabor function is obtained by discretizing its Fourier transform. The window data can be derived by minimizing the sums of the squares of the complex magnitudes of difference between its discrete Fourier transform and the Gabor function's discrete Fourier transform. Not only the full description of this scheme but also its application to fabric defect detection are given in this paper. Experimental results show that the 1-D convolution windows can be used to significantly reduce computational cost and greatly ensure the quality of the Gabor filters. So this scheme can be used in some real-time processing systems.展开更多
基金Scientific and Technological Development Project of Beijing Municipal Education Commission (No KM200510012002)
文摘A scheme for designing one-dimensional (1-D) convolution window of the circularly symmetric Gabor filter which is directly obtained from frequency domain is proposed. This scheme avoids the problem of choosing the sampling frequency in the spatial domain, or the sampling frequency must be determined when the window data is obtained by means of sampling the Gabor function, the impulse response of the Gabor filter. In this scheme, the discrete Fourier transform of the Gabor function is obtained by discretizing its Fourier transform. The window data can be derived by minimizing the sums of the squares of the complex magnitudes of difference between its discrete Fourier transform and the Gabor function's discrete Fourier transform. Not only the full description of this scheme but also its application to fabric defect detection are given in this paper. Experimental results show that the 1-D convolution windows can be used to significantly reduce computational cost and greatly ensure the quality of the Gabor filters. So this scheme can be used in some real-time processing systems.