A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a tradit...A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.展开更多
VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Underst...VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Understanding of the principles of operation of VFD systems as well as knowledge about their required operating environment is necessary for all operating personnel. Many times the operating personnel do not get involved with different technical issues until a complete failure has occurred. Hence, the awareness of the most dominant failure causes has a significant impact on assisting operators to avoid catastrophic failures and tremendous economic losses due to VFD shutdown. Proper plant design, accurate monitoring and data logging, following manufacturer preventive maintenance schedule, and choosing qualified team of operators can be the key to an efficient operation and a long lifetime for any VFD system. In this paper, we have analyzed the electrical and non-electrical causes of VFD failures based on a case study of a typical medium voltage VFD pumping station. Finally, recommendations are given from field analysis and observations.展开更多
Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consu...Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consumption in both commercial and residential buildings. Since the speed of a compressor driven by a conventional TPIM (two-phase induction motor) is fixed, it is either switched "ON", working at maximum capacity or switched "OFF" by a thermostat. While the most recent VF (variable-frequency) reluctance motor driven compressor delivers an enhanced performance over TPIM drive, it also provides variable-speed operation as the temperature changes, while improving the overall energy efficiency. This paper aimed to evaluate the performance of both TPIM and VF compressor drives for single-phase residential air-conditioning applications. Their cooling performance and harmonic distortions will be investigated. International standards for harmonic limits will also be applied in evaluating the distortions created by the VF drive.展开更多
基金This work is supported by the National High Technology Research and Development Program of China (863 Programs, GrantNo. 2007AA05Z224)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KGCX2-YW-345)Zhejiang Scientific and Technological Project(Grant No.2009C3113004)
文摘A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.
文摘VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Understanding of the principles of operation of VFD systems as well as knowledge about their required operating environment is necessary for all operating personnel. Many times the operating personnel do not get involved with different technical issues until a complete failure has occurred. Hence, the awareness of the most dominant failure causes has a significant impact on assisting operators to avoid catastrophic failures and tremendous economic losses due to VFD shutdown. Proper plant design, accurate monitoring and data logging, following manufacturer preventive maintenance schedule, and choosing qualified team of operators can be the key to an efficient operation and a long lifetime for any VFD system. In this paper, we have analyzed the electrical and non-electrical causes of VFD failures based on a case study of a typical medium voltage VFD pumping station. Finally, recommendations are given from field analysis and observations.
文摘Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consumption in both commercial and residential buildings. Since the speed of a compressor driven by a conventional TPIM (two-phase induction motor) is fixed, it is either switched "ON", working at maximum capacity or switched "OFF" by a thermostat. While the most recent VF (variable-frequency) reluctance motor driven compressor delivers an enhanced performance over TPIM drive, it also provides variable-speed operation as the temperature changes, while improving the overall energy efficiency. This paper aimed to evaluate the performance of both TPIM and VF compressor drives for single-phase residential air-conditioning applications. Their cooling performance and harmonic distortions will be investigated. International standards for harmonic limits will also be applied in evaluating the distortions created by the VF drive.