The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage refl...The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.展开更多
The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very sm...The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very small load-carrying ability or in earthquake areas. Moreover there is presented also an innovative two-stage method of the approximate calculation of the statically indeterminate trusses. Both are invented by the author by application of the principles of the superposition method.展开更多
According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can...According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.展开更多
基金sponsored by the 863 Program (Grant No.2006AA06Z206)the 973 Program (Grant No.2007CB209605)
文摘The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.
文摘The paper presents general description of combined structural system and initial analysis of an innovative system proposed as the main support structure for tall or heavy loaded buildings located on subsoil of very small load-carrying ability or in earthquake areas. Moreover there is presented also an innovative two-stage method of the approximate calculation of the statically indeterminate trusses. Both are invented by the author by application of the principles of the superposition method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277018, 61175102, & 51475115)the Open Fund of the State Key Laboratory of Mechanical Transmissions (Grant No.SKLMT-KFKT-201509)
文摘According to the anti-phase sine current superposition theorem, the orientation, the magnetic flux density, the angular speed and the rotational direction of the spatial universal rotating magnetic field (SURMF) can be controlled within the tri-axial orthogonal square Helmholtz coils (TOSHC). Nevertheless, three coupling direction angles of the normal vector of the SURMF in the Descartes coordinate system cannot be separately controlled, thus the adjustment of the orientation of the SURMF is difficult and the flexibility of the robotic posture control is restricted. For the dimension reduction and the decoupling of control variables, the orthogonal transformation operation theorem of the SURMF is proposed based on two independent rotation angular variables, which employs azimuth and altitude angles as two variables of the three-phase sine current superposition formula derived by the orthogonal rotation inverse transformation. Then the unique control rules of the orientation and the rotational direction of the SURMF are generalized in each spatial quadrant, thus the scanning of the normal vector of the SURMF along the horizontal or vertical direction can be achieved through changing only one variable, which simplifies the control process of the orientation of the SURMF greatly. To validate its feasibility and maneuverability, experiments were conducted in the animal intestine utilizing the innovative dual hemisphere capsule robot (DHCR) with active and passive modes. It was demonstrated that the posture adjustment and the steering rolling locomotion of the DHCR can be realized through single variable control, thus the orthogonal transformation operation theorem makes the control of the orientation of the SURMF convenient and flexible significantly. This breakthrough will lay a foundation for the human-machine interaction control of the SURMF.