In view of the seismic exploration problem of thin sand reservoirs in the Songliao Basin, this paper puts forward a migration imaging method using CGP (common geophone point) stacked cylindrical waves. By this means...In view of the seismic exploration problem of thin sand reservoirs in the Songliao Basin, this paper puts forward a migration imaging method using CGP (common geophone point) stacked cylindrical waves. By this means, seismic data should be acquired from a midpoint shooting layout system with small shot-point spacing and small geophone interval. Using such seismic data, CGP gathers are first stacked to compose a cylindrical wave section. The cylindrical wave section is migrated and imaged by means of the ray path downward continuation of the down-going wave and the wave equation downward continuation of the upgoing wave. The results from the modeling analysis and the data processing of the TK8157 seismic line in the Songliao Basin shows that the proposed migration imaging method has higher seismic resolution and fidelity. Furthermore, the proposed method is proven to be more effective for discovering small sand bodies, small faults, stratigraphic pinch-outs, and so on.展开更多
By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history...By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history and structural deformation of the marine stratigraphic system. The burial history of marine source rocks can be divided into three types, i.e., type I, type II and type III, which are obviously different from the case with present hydrocarbon phases in terms of hydrocarbon generation and petroleum-reservoir formation. Based on evolution history, the structural belts in the marine stratigraphic sequence can also be divided into four types, i.e. earlier normal fault-later fault-fold type, earlier uplift-later fault-fold type, earlier uplift-later flattened slope type, and earlier depression-later thrust type. In this paper, a successive gas generation model was proposed, and it was particularly pointed out that coupling of geothermal field annealing evolution and tectonic subsidence and late gas generation from dispersed liquid hydrocarbon in highly matured to over-matured source rocks are key factors for formation of marine petroleum reservoirs. The geological conditions for formation of high-grade reservoirs in deep marine system, covering early hydrocarbon injection, deep denudation and buried dolomitization, were summarized. It was finally concluded that three major structural belts, i.e. paleo-uplift belt characterized by composite hydrocarbon accumulation, paleo-fault belt and high-energy sedimentary facies belt, were involved in marine hydrocarbon accumulation.展开更多
文摘In view of the seismic exploration problem of thin sand reservoirs in the Songliao Basin, this paper puts forward a migration imaging method using CGP (common geophone point) stacked cylindrical waves. By this means, seismic data should be acquired from a midpoint shooting layout system with small shot-point spacing and small geophone interval. Using such seismic data, CGP gathers are first stacked to compose a cylindrical wave section. The cylindrical wave section is migrated and imaged by means of the ray path downward continuation of the down-going wave and the wave equation downward continuation of the upgoing wave. The results from the modeling analysis and the data processing of the TK8157 seismic line in the Songliao Basin shows that the proposed migration imaging method has higher seismic resolution and fidelity. Furthermore, the proposed method is proven to be more effective for discovering small sand bodies, small faults, stratigraphic pinch-outs, and so on.
基金the "973" programme of China (Grant No. 2001CB209100)
文摘By taking the Tarim Basin, Sichuan Basin and Ordos Basin as examples, the conditions for deep marine reservoir formation were illustrated in three aspects listed below: late-stage superimposition style, burial history and structural deformation of the marine stratigraphic system. The burial history of marine source rocks can be divided into three types, i.e., type I, type II and type III, which are obviously different from the case with present hydrocarbon phases in terms of hydrocarbon generation and petroleum-reservoir formation. Based on evolution history, the structural belts in the marine stratigraphic sequence can also be divided into four types, i.e. earlier normal fault-later fault-fold type, earlier uplift-later fault-fold type, earlier uplift-later flattened slope type, and earlier depression-later thrust type. In this paper, a successive gas generation model was proposed, and it was particularly pointed out that coupling of geothermal field annealing evolution and tectonic subsidence and late gas generation from dispersed liquid hydrocarbon in highly matured to over-matured source rocks are key factors for formation of marine petroleum reservoirs. The geological conditions for formation of high-grade reservoirs in deep marine system, covering early hydrocarbon injection, deep denudation and buried dolomitization, were summarized. It was finally concluded that three major structural belts, i.e. paleo-uplift belt characterized by composite hydrocarbon accumulation, paleo-fault belt and high-energy sedimentary facies belt, were involved in marine hydrocarbon accumulation.