The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage refl...The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.展开更多
基金sponsored by the 863 Program (Grant No.2006AA06Z206)the 973 Program (Grant No.2007CB209605)
文摘The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.