Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dati...Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.展开更多
In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late ...In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late Permian) mudstone samples in Panxian county, carrying out ICP-MS and XRD analysis. The results show that the amount of REEs (185.56-729.46 ×10-6) is high. The ratios of w(LREE)/w(HREE) (6.84- 13.86) and W(La)N/w(Yb)N (1.01-3.02) show clear differentiation of LREEs and HREEs. ZREE has a significantly or critically positive correlation with lithophile elements Th, Nb, Ta, Ti, Ca, Sc, Cs, Zr, Hf, Sr, Be and chaicophile element Zn, a critically negative correlation with siderophile element Fe and a slightly positive correlation with illite, illite smectite mixed layers and siderite. REEs originate mainly from terrigenous minerals, in an inorganic phase, Source rocks of our samples consist of Emeishan basalt and a small part of sedimentary rocks, as suggested by the distribution patterns of REEs and w(∑REE)- w(La)/w(Yb) diagram. Moreover, abnormal surfaces near the sequence boundaries (SB2, SB3, SB4) are related wiLth the boundaries, identified by geochemical characteristics of the REEs, such as ∑REE. w(LREE)/w(HREE), Eu/Eu* and Ceanom.展开更多
Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in ...Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.展开更多
There are abundant bitumens and oil seepages stored in vugs in a Lower-Triassic Daye formation(T_1d)marlite in Ni'erguan village in the Southern Guizhou Depression. However, the source of those oil seepages has no...There are abundant bitumens and oil seepages stored in vugs in a Lower-Triassic Daye formation(T_1d)marlite in Ni'erguan village in the Southern Guizhou Depression. However, the source of those oil seepages has not been determined to date. Multiple suites of source rocks of different ages exist in the depression. Both the oil seepages and potential source rocks have undergone complicated secondary alterations, which have added to the difficulty of an oil-source correlation. For example, the main source rock, a Lower-Cambrian Niutitang Formation"(∈_1n) mudstone, is over mature, and other potential source rocks, both from the Permian and the Triassic, are still in the oil window. In addition, the T_1d oil seepages underwent a large amount of biodegradation. To minimize the influence of biodegradation and thermal maturation, special methods were employed in this oil-source correlation study. These methods included catalytic hydropyrolysis, to release covalently bound biomarkers from the over mature"kerogen of ∈_1n mudstone, sequential extraction, to obtain chloroform bitumen A and chloroform bitumen C from the T_1d marlite, and anhydrous pyrolysis, to release pyrolysates from the kerogen of T_1d marlite. Using the methods above, the biomarkers and n-alkanes releasedfrom the oil samples and source rocks were analysed by GC–MS and GC-C-IRMS. The oil-source correlation indicated that the T_1d oil seepage primarily originated from"the ∈_1n mudstone and was partially mixed with oil generated from the T_1d marlite. Furthermore, the seepage also demonstrated that the above methods were effective for the complicated oil-source correlation in the Southern Guizhou Depression.展开更多
The Yuzhou Flora of the southern North China Platform possesses the typical regional features of the Middle and Late Cathaysian Flora.For a long time during the Permian,this area was located on shoreline marine tidal ...The Yuzhou Flora of the southern North China Platform possesses the typical regional features of the Middle and Late Cathaysian Flora.For a long time during the Permian,this area was located on shoreline marine tidal flats and deltas at low latitudes with a warm and humid climate.Consequently,many successive layers with abundant well-preserved plant fossils and a complete evolutionary sequence were developed.This is a unique and ideal place to study the Middle and Late Cathaysian Flora.We have recognized 111 genera and 307 species from this flora.The rapid morphological evolution and uninterrupted stratigraphic succession of Lobatannularia(Sphenophytes) make this group one of the bases for biostratigraphic divisions of the Permian System of the North China Platform.Ninety percent of Pteridophytes belong to the order Marattiales,which are well developed during the early and middle stages of the Yuzhou Flora but experience a sudden decline during the late stage.Ancient Pteridospermatophytes only flourished during the Middle Permian whereas advanced Peltaspermales are extremely well developed at the end of the early Late Permian.Among them Shenzhouphyllum is one of characteristic elements in the late stage of the Yuzhou Flora.The Cycadophytes evolved relatively early in this area and they differentiated and proliferated during the late Middle to early Late Permian.The number of species of Ginkgophytes is small but this group is extremely abundant,especially in the early Late Permian.The Gigantopteridales(preangiosperms) is a very important and unique group in the Yuzhou Flora.Based upon their venation and leaf architecture,this group can be divided into three evolutionary stages,i.e.,appearance and differentiation,first flourishing,and second flourishing and sudden disappearance,which form the basis for biostratigraphic division and correlation of the Permian System of the North China Platform.Based upon the evolutionary trend of venation pattern and leaf architecture,we propose some taxonomic changes at the generic level.The Yuzhou Flora emerged at the middle Early Permian(Zisongian) and suddenly disappeared at the early Late Permian(Wujiapingian).It is later replaced by the Euro-American Zechstein flora in the late Late Permian.The Yuzhou Flora is divided into three(early,middle and late) stages based upon the cyclic development of its plant groups.Five fossil plant assemblage zones are recognized from the Yuzhou Flora based upon the succession of each group and their combined characters in different layers.展开更多
基金Project(41403035)supported by the National Natural Science Foundation of ChinaProject(13JJ4041)supported by Hunan Provincial National Natural Science Foundation,China
文摘Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 40730422)
文摘In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late Permian) mudstone samples in Panxian county, carrying out ICP-MS and XRD analysis. The results show that the amount of REEs (185.56-729.46 ×10-6) is high. The ratios of w(LREE)/w(HREE) (6.84- 13.86) and W(La)N/w(Yb)N (1.01-3.02) show clear differentiation of LREEs and HREEs. ZREE has a significantly or critically positive correlation with lithophile elements Th, Nb, Ta, Ti, Ca, Sc, Cs, Zr, Hf, Sr, Be and chaicophile element Zn, a critically negative correlation with siderophile element Fe and a slightly positive correlation with illite, illite smectite mixed layers and siderite. REEs originate mainly from terrigenous minerals, in an inorganic phase, Source rocks of our samples consist of Emeishan basalt and a small part of sedimentary rocks, as suggested by the distribution patterns of REEs and w(∑REE)- w(La)/w(Yb) diagram. Moreover, abnormal surfaces near the sequence boundaries (SB2, SB3, SB4) are related wiLth the boundaries, identified by geochemical characteristics of the REEs, such as ∑REE. w(LREE)/w(HREE), Eu/Eu* and Ceanom.
文摘Based on element geochemical studies of the main Permian exploitable coal measure strata in Western Guizhou, the element geochemical distribution characteristics of the main exploitable coal measures were revealed in the regions of Dafang, Qianxi, Weining, Hezhang, Zhijin, etc., of Guizhou Province, and the results show that their element contents are mainly affected by terrestrial material supply. Coal measures formed in the delta plain environment where sufficient terrestrial materials are supplied contain relatively abundant trace elements and rare-earth elements, whereas those formed in the tidal-fiat environment influenced greatly by seawater have relatively low contents of trace elements and rare-earth elements, mainly con- trolled by the geological fact that basalts the parent rocks from source regions contain high trace elements and rare-earth elements. In addition, coal measures affected by later hydrothermal activities and fault tectonics contain a large amount of harmful elements. According to the rules of distribution of elements in coal measures, a new idea was put forward to classify coal-forming environments by using the geochemical composition characteristics, which is of great significance in dissolving the problem of whether coal measures were fbrmed either in delta environments or in tidal-flat environments in Western Gui- zhou. At the same time, the rules of distribution of elements in the main exploitable coal measures in Western Guizhou were fully understood, which is of direct significance in utilizing coal resources on the basis of classification of coals, as well as in developing the coal chemical industry.
基金supported jointly by the National Science and Technology Major Project of China (Grant Nos: 2011ZX05008002 and 2011ZX05005-001)
文摘There are abundant bitumens and oil seepages stored in vugs in a Lower-Triassic Daye formation(T_1d)marlite in Ni'erguan village in the Southern Guizhou Depression. However, the source of those oil seepages has not been determined to date. Multiple suites of source rocks of different ages exist in the depression. Both the oil seepages and potential source rocks have undergone complicated secondary alterations, which have added to the difficulty of an oil-source correlation. For example, the main source rock, a Lower-Cambrian Niutitang Formation"(∈_1n) mudstone, is over mature, and other potential source rocks, both from the Permian and the Triassic, are still in the oil window. In addition, the T_1d oil seepages underwent a large amount of biodegradation. To minimize the influence of biodegradation and thermal maturation, special methods were employed in this oil-source correlation study. These methods included catalytic hydropyrolysis, to release covalently bound biomarkers from the over mature"kerogen of ∈_1n mudstone, sequential extraction, to obtain chloroform bitumen A and chloroform bitumen C from the T_1d marlite, and anhydrous pyrolysis, to release pyrolysates from the kerogen of T_1d marlite. Using the methods above, the biomarkers and n-alkanes releasedfrom the oil samples and source rocks were analysed by GC–MS and GC-C-IRMS. The oil-source correlation indicated that the T_1d oil seepage primarily originated from"the ∈_1n mudstone and was partially mixed with oil generated from the T_1d marlite. Furthermore, the seepage also demonstrated that the above methods were effective for the complicated oil-source correlation in the Southern Guizhou Depression.
基金supported by the 2012 National Rock,Mineral and Fossil Specimen Resource Sharing Program of National Science & Technology Infrastructure of ChinaNational Natural Science Foundation of China(Grant Nos. 48970070 and 49472075)
文摘The Yuzhou Flora of the southern North China Platform possesses the typical regional features of the Middle and Late Cathaysian Flora.For a long time during the Permian,this area was located on shoreline marine tidal flats and deltas at low latitudes with a warm and humid climate.Consequently,many successive layers with abundant well-preserved plant fossils and a complete evolutionary sequence were developed.This is a unique and ideal place to study the Middle and Late Cathaysian Flora.We have recognized 111 genera and 307 species from this flora.The rapid morphological evolution and uninterrupted stratigraphic succession of Lobatannularia(Sphenophytes) make this group one of the bases for biostratigraphic divisions of the Permian System of the North China Platform.Ninety percent of Pteridophytes belong to the order Marattiales,which are well developed during the early and middle stages of the Yuzhou Flora but experience a sudden decline during the late stage.Ancient Pteridospermatophytes only flourished during the Middle Permian whereas advanced Peltaspermales are extremely well developed at the end of the early Late Permian.Among them Shenzhouphyllum is one of characteristic elements in the late stage of the Yuzhou Flora.The Cycadophytes evolved relatively early in this area and they differentiated and proliferated during the late Middle to early Late Permian.The number of species of Ginkgophytes is small but this group is extremely abundant,especially in the early Late Permian.The Gigantopteridales(preangiosperms) is a very important and unique group in the Yuzhou Flora.Based upon their venation and leaf architecture,this group can be divided into three evolutionary stages,i.e.,appearance and differentiation,first flourishing,and second flourishing and sudden disappearance,which form the basis for biostratigraphic division and correlation of the Permian System of the North China Platform.Based upon the evolutionary trend of venation pattern and leaf architecture,we propose some taxonomic changes at the generic level.The Yuzhou Flora emerged at the middle Early Permian(Zisongian) and suddenly disappeared at the early Late Permian(Wujiapingian).It is later replaced by the Euro-American Zechstein flora in the late Late Permian.The Yuzhou Flora is divided into three(early,middle and late) stages based upon the cyclic development of its plant groups.Five fossil plant assemblage zones are recognized from the Yuzhou Flora based upon the succession of each group and their combined characters in different layers.