A Geiger mode planar InGaAs/InP avalanche photodiode (APD) with a cascade peripheral junction structure to suppress edge breakdowns is designed by finite-element analysis. The photodiode breakdown voltage is reduced...A Geiger mode planar InGaAs/InP avalanche photodiode (APD) with a cascade peripheral junction structure to suppress edge breakdowns is designed by finite-element analysis. The photodiode breakdown voltage is reduced to 54.3V by controlling the central junction depth, while the electric field distribution along the device central axis is controlled by adjusting doping level and thickness of the lnP field control layer. Using a cascade junction structure at the periphery of the active area, premature edge breakdowns are effectively suppressed. The simulations show that the quadra-cascade structure is a good trade-off between suppression performance and fabrication complexity, with a reduced peak electric field of 5.2 × 10^5 kV/cm and a maximum hole ionization integral of 1. 201. Work presented in this paper provides an effective way to design high performance photon counting InGaAs/InP avalanche photodiodes.展开更多
In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imag...In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.展开更多
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere...The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.展开更多
文摘A Geiger mode planar InGaAs/InP avalanche photodiode (APD) with a cascade peripheral junction structure to suppress edge breakdowns is designed by finite-element analysis. The photodiode breakdown voltage is reduced to 54.3V by controlling the central junction depth, while the electric field distribution along the device central axis is controlled by adjusting doping level and thickness of the lnP field control layer. Using a cascade junction structure at the periphery of the active area, premature edge breakdowns are effectively suppressed. The simulations show that the quadra-cascade structure is a good trade-off between suppression performance and fabrication complexity, with a reduced peak electric field of 5.2 × 10^5 kV/cm and a maximum hole ionization integral of 1. 201. Work presented in this paper provides an effective way to design high performance photon counting InGaAs/InP avalanche photodiodes.
基金This research work is funded by the Scientific Research Program of Shaanxi Provincial Education Department(No.19JK0668)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588).
文摘In crosswell seismic exploration,the imaging section produced by migration based on a wave equation has a serious arc phenomenon at its edge and a small effective range because of geometrical restrictions.Another imaging section produced by the VSP-CDP stack imaging method employed with ray-tracing theory is amplitude-preserved.However,imaging 3D complex lithological structures accurately with this method is difficult.Therefore,this study proposes inverse Gaussian beam stack imaging in the 3D crosswell seismic exploration of deviated wells on the basis of Gaussian beam ray-tracing theory.By employing Gaussian beam ray-tracing theory in 3D crosswell seismic exploration,we analyzed the energy relationship between seismic wave fields and their effective rays.In imaging,the single-channel seismic wave fi eld data in the common shot point gather are converted into multiple effective wave fields in the common reflection point gather by the inverse Gaussian beam.The process produces a large fold number of intensive reflection points.Selected from the horizontal and vertical directions of the 2D measuring line,the wave fi elds of the eff ective reflection points in the same stack bin are projected onto the 2D measuring line,chosen according to the distribution characteristics of the reflection points,and stacked into an imaging section.The method is applied to X oilfi eld to identify the internal structure of the off shore gas cloud area.The results provided positive support for the inverse Gaussian beam stack imaging of 3D complex lithological structures and proved that technology is a powerful imaging tool for 3D crosswell seismic data processing.
文摘The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined.