基于微分特征集理论和算法,提出在一定条件下判定偏微分方程(组)非古典对称存在性的机械化方法.该方法对Clarkson P A提出的关于偏微分方程(组)的非古典对称的公开问题给出了部分回答,为完全解决该问题提供了一个思路.通过若干个发展方...基于微分特征集理论和算法,提出在一定条件下判定偏微分方程(组)非古典对称存在性的机械化方法.该方法对Clarkson P A提出的关于偏微分方程(组)的非古典对称的公开问题给出了部分回答,为完全解决该问题提供了一个思路.通过若干个发展方程的非古典对称的确定说明了该方法的有效性.展开更多
In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general in...In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.展开更多
文摘本文利用一种新方法对Fokker- Planck方程的非古典势对称群生成元进行研究,找到方程的几个非古典势对称群生成元,并采用非古典对称群方法由这些对称群生成元构造得到Fokker- Planck方程的相应显式解.这些新显式解不能由Fokker -Planck方程本身的Lie对称或Li-e B cklund对称来获得.在验证所求得显式解的过程中,还发现并得到了另外几个显式解.这些新显式解则不能由Fokker -Planck方程本身的Lie对称,Lie- B cklund对称或非古典势对称来获得.文章表明,通过偏微分方程的非古典势对称群生成元来寻找其显式解是可能的.
文摘In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.