The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are d...The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are developed in the depression. There exist lots of groups of fault structures with strikes of NNE(or NE),NW, near NS and EW etc., of which the faults with strikes of NNE and NW play an important controlling role on present-day structural framework of the depression. The faults with near NS-striking and EW-striking deeply affect the establishment of structural framework of basement of the depression. Although most of the fractures are filled by calcite and other minerals, under the action of later structural stress, the earlier fractures could change their features into tensional ones. Therefore, much attention should be paid to the exploration and exploitation of Paleozoic oil and gas in Dongpu depression.展开更多
The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton...The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.展开更多
Based on the power spectra of gravity anomalies in Tarim Basin, the anomalies can be decomposed to the following three components: a sub-anomaly formed mainly by the basin crystallized basement, a sub-anomaly formed m...Based on the power spectra of gravity anomalies in Tarim Basin, the anomalies can be decomposed to the following three components: a sub-anomaly formed mainly by the basin crystallized basement, a sub-anomaly formed mainly by deep sedimentary layers, and that by shallow sedimentary layers. A special wavelet transform analysis scheme and a density inversion method are designed and applied to the decomposition and inversion of gravity sub-anomalies, which are correlated with regional geology and drilling data. The results indicate that the deep and the shallow sub-anomalies show some relations with ancient fluid active zones. The negative density disturbances inversed from the shallow sub-anomaly are mainly caused by Mesozoic fluid active zones, whereas the negative density disturbances form the deep sub-anomalies are mainly correlated with Paleozoic fluid active zones. As the ancient fluid movement was good for formation of oil/gas fields, the multi-scale inversion methods for locating the ancient fluid movement zones seem to be helpful and valuable to oil/gas exploration.展开更多
文摘The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are developed in the depression. There exist lots of groups of fault structures with strikes of NNE(or NE),NW, near NS and EW etc., of which the faults with strikes of NNE and NW play an important controlling role on present-day structural framework of the depression. The faults with near NS-striking and EW-striking deeply affect the establishment of structural framework of basement of the depression. Although most of the fractures are filled by calcite and other minerals, under the action of later structural stress, the earlier fractures could change their features into tensional ones. Therefore, much attention should be paid to the exploration and exploitation of Paleozoic oil and gas in Dongpu depression.
基金supported by the National Oil&Gas Major Project of China(Grant No.2011ZX05004)the CNPC Science&Technology Project(Grant No.111702kt00900046)
文摘The Central Sichuan Block(CSB) is the hardest block between the deep faults of Pujiang-Bazhong and Huaying Mountain in the central part of Sichuan Basin, which lies in the northwestern part of the upper Yangtze Craton. The CSB has long been considered as the oldest and most stable core area of Yangtze Craton, with the uniform basement and high level of hardening. Here we present a detailed interpretation of deep structures in the CSB by integrating high-resolution seismic data(approx. 50000 km2) with large-scale aeromagnetic data. Results show that eight Neoproterozoic extensional structures of different scales are nearly EW-, NEE-, and NW-trending in the CSB. Discovery of these extensional structures changes previous understanding of the CSB as a unified block. The extensional structures experienced one or two stages of extension in the longitudinal section, and filled with 3000–5000-m-thick weakly magnetic materials. Development of basal A-type granite in Weiyuan, Sichuan Basin and bimodal volcanic rocks of the Suxiong Formation, Western Sichuan confirms the CSB's Neoproterozoic extensional tectonic setting. The newly discovered Neoproterozoic extensional structures are of great significance for source rock and favorable sedimentary facies distribution, reservoir development, and gas accumulation.
文摘Based on the power spectra of gravity anomalies in Tarim Basin, the anomalies can be decomposed to the following three components: a sub-anomaly formed mainly by the basin crystallized basement, a sub-anomaly formed mainly by deep sedimentary layers, and that by shallow sedimentary layers. A special wavelet transform analysis scheme and a density inversion method are designed and applied to the decomposition and inversion of gravity sub-anomalies, which are correlated with regional geology and drilling data. The results indicate that the deep and the shallow sub-anomalies show some relations with ancient fluid active zones. The negative density disturbances inversed from the shallow sub-anomaly are mainly caused by Mesozoic fluid active zones, whereas the negative density disturbances form the deep sub-anomalies are mainly correlated with Paleozoic fluid active zones. As the ancient fluid movement was good for formation of oil/gas fields, the multi-scale inversion methods for locating the ancient fluid movement zones seem to be helpful and valuable to oil/gas exploration.