The time sequence of high-resolution paleoclimatic changes since the last glacial period--60,500 yr B.P.--has been reconstructed with high-precision TIMS-U series dates and analyses of the oxygen isotopes from Q4 and ...The time sequence of high-resolution paleoclimatic changes since the last glacial period--60,500 yr B.P.--has been reconstructed with high-precision TIMS-U series dates and analyses of the oxygen isotopes from Q4 and Q6 stalagmites of the Qixin Cave in southern Guizhou. Comparative analyses of δ^18O curves from the GISP2' ice core and the two stalagmites shows that the depositional records of the Dansgaard-Oeschger cycle events 1-18 and Heinrich's events H1-H5 from the records of the two stalagmites reflect rapid climate changes over a short time scale since the last glacial stage, and indicates the precise boundary lines at which the cold events occurred. The study results have shown that the records of the cold and warm events from the two stalagmites since 60,500 yr B.P. are the reflection of the paleo-monsoon circulation. Changes are clearly affected by the climate oscillation of the North Atlantic Ocean, and indicate that they have a strong teleconnection with the paleoclimate changes that occurred in the North Polar region. The records of δ^18O from the Q4 and Q6 stalagmites indicate that the δ^18O values from 60,590 yr B.P. to 11,290 yr B.P. changed from a more negative (or lighter)drift to a heavier or positive drift trend in the last glacial period. The data reflect the weakening of the Asian summer monsoon and the climate which generally became drier and cooler.展开更多
Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in...Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in the Sea of Azov region was investigated to reconstruct climatic variability during the Marine Isotope Stage (MIS)11- MIS 1, using proxies of grain size (GS), magnetic susceptibility (xlf and Xfd(%)), carbonate content (CaCO3%) and soil color The results enabled formulation of a detailed description of the climatic characteristics related to each individual layer. The sequence indicates that the paleoclimate shifted progressively towards increasingly cooler, somewhat drier conditions. The CK section may thus be ideal for reconstructing climatie eondifions during the Middle and Late Pleistocene in the Sea of Azov region. However, the )Of value of paleosol $2 in the CK profile indicates different characteristics from the other paleosol layers, dilution of carbonate resulting from carbonate leaching in L2 may be the main reason for the decrease in magnetic susceptibility. Furthermore, through simple analysis part of the environmental evolution process in the Sea of Azov region and Serbia during Middle and Late Pleistocene cycles. The climate cycle expressed by Xfd(%) and Xlf variations show similar patterns, with rapidly alternating cold and warm intervals. Nevertheless, although the two areas had different climatic regimes, geographical settings, and loess source areas, both exhibited similar climate change trends since the MIS 11.展开更多
The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the ...The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the quarry paleosols from north of Barlad was accomplished based on field observations and macroscopic physic-chemical results. Three levels of paleosols with variable thickness were determined. These three fossils layers are interbedded by four loess deposits. The physical-chimical data provide important information for the paleosol genesis and depositional/climatic environments. The carbon content and C/N ratio indicate the strength of pedogenesis in the Pleistocene and trends of biomass accumulation.展开更多
文摘The time sequence of high-resolution paleoclimatic changes since the last glacial period--60,500 yr B.P.--has been reconstructed with high-precision TIMS-U series dates and analyses of the oxygen isotopes from Q4 and Q6 stalagmites of the Qixin Cave in southern Guizhou. Comparative analyses of δ^18O curves from the GISP2' ice core and the two stalagmites shows that the depositional records of the Dansgaard-Oeschger cycle events 1-18 and Heinrich's events H1-H5 from the records of the two stalagmites reflect rapid climate changes over a short time scale since the last glacial stage, and indicates the precise boundary lines at which the cold events occurred. The study results have shown that the records of the cold and warm events from the two stalagmites since 60,500 yr B.P. are the reflection of the paleo-monsoon circulation. Changes are clearly affected by the climate oscillation of the North Atlantic Ocean, and indicate that they have a strong teleconnection with the paleoclimate changes that occurred in the North Polar region. The records of δ^18O from the Q4 and Q6 stalagmites indicate that the δ^18O values from 60,590 yr B.P. to 11,290 yr B.P. changed from a more negative (or lighter)drift to a heavier or positive drift trend in the last glacial period. The data reflect the weakening of the Asian summer monsoon and the climate which generally became drier and cooler.
基金supported by the National Natural Science Foundation of China(Grant No.41271024)International Cooperation and Exchanges Project(The record of landscape changes in Eurasian arid and semi-arid regions by loess-paleosol sequence of southern Russian on the million scales and its comparative study with Chinese loess(Grant No.No.41411130204)
文摘Abstract: Loess-paleosol sequences preserve records of climatic change during the Quaternary, which is important for paleoclimate study. In this study, a loess-palaeosol sequence from the Chumbur- Kosa (CK) site in the Sea of Azov region was investigated to reconstruct climatic variability during the Marine Isotope Stage (MIS)11- MIS 1, using proxies of grain size (GS), magnetic susceptibility (xlf and Xfd(%)), carbonate content (CaCO3%) and soil color The results enabled formulation of a detailed description of the climatic characteristics related to each individual layer. The sequence indicates that the paleoclimate shifted progressively towards increasingly cooler, somewhat drier conditions. The CK section may thus be ideal for reconstructing climatie eondifions during the Middle and Late Pleistocene in the Sea of Azov region. However, the )Of value of paleosol $2 in the CK profile indicates different characteristics from the other paleosol layers, dilution of carbonate resulting from carbonate leaching in L2 may be the main reason for the decrease in magnetic susceptibility. Furthermore, through simple analysis part of the environmental evolution process in the Sea of Azov region and Serbia during Middle and Late Pleistocene cycles. The climate cycle expressed by Xfd(%) and Xlf variations show similar patterns, with rapidly alternating cold and warm intervals. Nevertheless, although the two areas had different climatic regimes, geographical settings, and loess source areas, both exhibited similar climate change trends since the MIS 11.
文摘The loess deposits comprise several paleosol layers reflecting alternation of drier and wetter climate during Quaternary. Such a situation occurs in north of Barlad, on The Sohodau's Hill. Morphological study of the quarry paleosols from north of Barlad was accomplished based on field observations and macroscopic physic-chemical results. Three levels of paleosols with variable thickness were determined. These three fossils layers are interbedded by four loess deposits. The physical-chimical data provide important information for the paleosol genesis and depositional/climatic environments. The carbon content and C/N ratio indicate the strength of pedogenesis in the Pleistocene and trends of biomass accumulation.