期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GF卫星解译巴丹吉林沙漠湖泊水量变化 被引量:4
1
作者 曹乐 聂振龙 +4 位作者 姜高磊 刘敏 贺鹏 童立强 王具文 《人民黄河》 CAS 北大核心 2020年第7期40-45,共6页
遥感技术作为科学、快速、大面积调查监测手段,在湖泊演化、动态变化研究中应用广泛。通过解译国产GF-1、GF-2卫星遥感影像信息,结合实地勘测,解译了巴丹吉林沙漠110个湖泊地质历史时期与现代的湖面高程和边界,总结了湖泊萎缩规律,估算... 遥感技术作为科学、快速、大面积调查监测手段,在湖泊演化、动态变化研究中应用广泛。通过解译国产GF-1、GF-2卫星遥感影像信息,结合实地勘测,解译了巴丹吉林沙漠110个湖泊地质历史时期与现代的湖面高程和边界,总结了湖泊萎缩规律,估算了两期水量变化。结果显示:湖面高程平均降低9.76 m,面积共减少61.052 km^2(占古湖总面积的75.49%),湖泊群水量共减少4.9亿m^3,说明湖泊萎缩程度高,沙漠干旱化趋势明显;研究区古、今地下水等水位线均表现出东南高、西北低的宏观特征,反映了古、今沙漠区地下水相同的补给来源与径流条件;基底凹陷区湖泊萎缩程度较低(如苏木吉林湖),基底隆起区湖泊萎缩程度较高(如雅布赖山前湖泊),萎缩程度的差异性受区域构造基底的控制与影响。 展开更多
关键词 遥感解译 古湖高程 湖泊萎缩 水量变化 巴丹吉林沙漠
下载PDF
Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau
2
作者 Zorigto B.NAMSARAEV Svetlana V.ZAITSEVA +2 位作者 Vladimir M.GORLENKO Ludmila P.KOZYREVA Bair B.NAMSARAEV 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第6期1391-1401,共11页
A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkalin... A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30~C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity, pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L.d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis. 展开更多
关键词 alkaline lakes microbial mats Mongolian plateau biogeochemical cycles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部