期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合句法距离与方面注意力的方面级情感分析
1
作者 张隆基 赵晖 《计算机科学》 CSCD 北大核心 2023年第12期262-269,共8页
目前,基于句法依存树的图卷积网络面临着卷积层数过深而产生过平滑的问题,无法提取句法依存树的全局节点信息。虽然搭配序列模型可以提取到语句的上下文的信息,但是序列模型依赖时序的特点导致图卷积网络无法有效地区分上下文特征对方... 目前,基于句法依存树的图卷积网络面临着卷积层数过深而产生过平滑的问题,无法提取句法依存树的全局节点信息。虽然搭配序列模型可以提取到语句的上下文的信息,但是序列模型依赖时序的特点导致图卷积网络无法有效地区分上下文特征对方面项的贡献度。针对上述问题,提出了一种基于句法距离和方面关注注意力机制的新型图卷积网络模型。首先,该模型利用双向长短期记忆网络分别学习语句和方面项的上下文信息,同时结合图卷积网络学习语句的句法依存信息。其次,依据句法依存树计算所有节点之间的句法依存距离,设定阈值削弱长距离特征的权重占比,提高图卷积模型区分上下文特征的能力。最后,设计具有残差连接的注意力机制,指导方面项自动聚焦于语句中的重要信息。实验结果表明,相较于基线方法,所提模型在多个公开数据集上展现出了较好的分析性能,在Twitter数据集和Laptop数据集上的情感分类准确率分别高达75.94%和78.59%,表明了所提方法的有效性。 展开更多
关键词 图卷积网络 句法依存 句法依存距离 注意力机制 方面级情感分析
下载PDF
目标依赖的新闻事件识别
2
作者 张甜甜 兰曼 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期60-72,共13页
海量新闻文本中往往涉及多个实体,并蕴含复杂多样的事件.为了挖掘这些实体、事件信息,先前的以事件为中心的事件抽取方法大多先检测事件,再抽取事件论元.受限于触发词和事件识别,该方法无法应用于真实工业场景下的新闻事件抽取.考虑到... 海量新闻文本中往往涉及多个实体,并蕴含复杂多样的事件.为了挖掘这些实体、事件信息,先前的以事件为中心的事件抽取方法大多先检测事件,再抽取事件论元.受限于触发词和事件识别,该方法无法应用于真实工业场景下的新闻事件抽取.考虑到命名实体识别(named entity recognition, NER)的性能达到90%以上,提出了以目标实体为视角的事件抽取任务—目标依赖的事件识别(target-dependent event detection, TDED),旨在抽取出实体并识别其对应的事件.基于该任务,提出了先抽取实体再识别目标级事件类型的两阶段模型框架.该模型融合了事件关键词和句法依存距离特征,能够学习目标依赖的上下文信息.在构建好的真实中文金融数据集上的实验结果表明,该模型抽取性能较佳,即使在句中存在多个实体或事件的复杂情形下也能取得很好的性能表现. 展开更多
关键词 目标依赖 事件识别 实体识别 事件关键词 句法依存距离
下载PDF
基于万有引力模型的关键词自动抽取方法 被引量:1
3
作者 李欢 吕学强 +1 位作者 李宝安 徐丽萍 《计算机工程与设计》 北大核心 2019年第4期1091-1098,共8页
为解决传统万有引力模型因词语质量、词间距离度量不足导致关键词效果较差的问题,分别从词语质量表示和距离计算两方面对传统万有引力模型进行改进。提出基于词频-文档分布熵的方法构建通用词表,过滤候选词后,综合位置、词性、词长特征... 为解决传统万有引力模型因词语质量、词间距离度量不足导致关键词效果较差的问题,分别从词语质量表示和距离计算两方面对传统万有引力模型进行改进。提出基于词频-文档分布熵的方法构建通用词表,过滤候选词后,综合位置、词性、词长特征改进TF-IDF方法,计算词语外部重要性;构建共现网络图,通过计算词语关联度衡量单词内部重要性,融合内部重要性和外部重要性计算词语质量并赋予图节点差异化初始权重;在语义距离的基础上引入依存句法距离,计算词间引力作为边的权重,多次迭代后排序输出TopK个关键词。实验结果表明,该方法在3GPP技术规范和公开的SemEval2010、DUC2001数据集上较传统方法取得了更好的效果,验证了方法的有效性和通用性。 展开更多
关键词 万有引力模型 词频-文档分布熵 关键词抽取 词语关联度 依存句法距离
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部