Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and o...Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and operator algebra.展开更多
基金Supported by Doctoral Program Foundation of Higher Education.
文摘Let φ be a normal function defined on [0, 1) and A^p(φ) Bergman space weighted with φ~p(|z|)/(1-|z|~2) for 1≤p<∞. The compactnesses of Toeplitz operaters on A^p(φ) are characterized by Carleson measures and operator algebra.