将CO_2转化为甲醇,用作燃料或基础化工原料,是实现CO_2资源化利用的重要途径之一。研究设计了一种新型双室隔膜电解池,能够在N-甲基吡咯烷酮(NMP)/四丁基高氯酸铵(TBAP)溶液中,以可再生电能为能源,用电化学催化还原的方法将CO_2转化为CO...将CO_2转化为甲醇,用作燃料或基础化工原料,是实现CO_2资源化利用的重要途径之一。研究设计了一种新型双室隔膜电解池,能够在N-甲基吡咯烷酮(NMP)/四丁基高氯酸铵(TBAP)溶液中,以可再生电能为能源,用电化学催化还原的方法将CO_2转化为CO,然后用工业制甲醇的传统方法将CO氢化还原为甲醇。循环伏安测试结果表明,CO_2在Au电极上发生了电还原反应;恒电位电解测试结果表明,阴极电流密度最高可达6.6 m A×cm^(-2);气相色谱检测结果表明,阴极气相反应产物主要为CO,生成CO的电流效率最高可达93%。由于CO_2电还原反应自身有H_2O生成,阴极表面有H2析出。扫描电镜(SEM)检测表明,Au电极表面没有附着物生成。在N-甲基吡咯烷酮/四丁基高氯酸铵溶液中电还原CO_2,具有电解液性质稳定、电极不中毒的优点,因而具有潜在的工业化应用前景。展开更多
在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid stat...在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid state transformer,SST)间输出电压偏差反馈调节,减小输出电压相角差和幅值差;采用基于模糊控制理论的瞬时环流反馈,进行动态虚拟阻抗调节,使得SST输出阻抗按额定功率精确匹配。仿真及分析表明,电压偏差反馈调节配合动态虚拟阻抗控制可以有效地抑制SST间环流,同时提高SST输出电压的稳定性。展开更多
This paper briefs the basic objective of pursuing Renewable Portfolio Standard (RPS), puts forward a thinking about the scope and three modes of RPS-implementation in China and enumerates other possible measures, such...This paper briefs the basic objective of pursuing Renewable Portfolio Standard (RPS), puts forward a thinking about the scope and three modes of RPS-implementation in China and enumerates other possible measures, such as public bidding on concession, exemption from value-added tax, to promote wind power exploitation and development.展开更多
Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and...Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.展开更多
As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and p...As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.展开更多
With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs ne...With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.展开更多
Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In th...Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from "large wind power country" to "strong wind power country", opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.展开更多
Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.Thi...Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.展开更多
This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play mo...This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety,environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.展开更多
Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with largescale development conditions and prospect for the commercialization. The development of wind energy is a system...Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with largescale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relationship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship between the wind turbine generator system and the components, relationship between wind energy technology and wind energy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regulation, as well as giving out some suggestions.展开更多
Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low elect...Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study to provide an overview of the current condition of the Philippines' power system and discuss the energy flexibility in the Philippines' power system. A further discussion and recommendation is conducted in the end of the paper.展开更多
Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This ...Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This paper examined the displacement of coal power plant capacity from 2010 to 2050 by renewables with respect to three drivers assumed under various conditions: the American Recovery and Reinvestment Act (ARRA), Greenhouse Gas (GItG) policy, and varying plant capital cost cases. The results by 2050 illustrate that renewable market penetration captures anywhere from 1.9% to 6.4% of potential coal power generation capacity additions. Renewable power generation capacity additions is expected to outpace coal power plant additions by 89% with respect to ARRA in 2050, however with no GHG policy coal power generation capacity build-outs will outpace renewables by as high as 809%. Finally, coal power generation is still projected to be the largest single energy source contributor to the electricity market making up 28.0% of total available capacity, while renewables are expected to only make up 16.3% of total available capacity.展开更多
文摘将CO_2转化为甲醇,用作燃料或基础化工原料,是实现CO_2资源化利用的重要途径之一。研究设计了一种新型双室隔膜电解池,能够在N-甲基吡咯烷酮(NMP)/四丁基高氯酸铵(TBAP)溶液中,以可再生电能为能源,用电化学催化还原的方法将CO_2转化为CO,然后用工业制甲醇的传统方法将CO氢化还原为甲醇。循环伏安测试结果表明,CO_2在Au电极上发生了电还原反应;恒电位电解测试结果表明,阴极电流密度最高可达6.6 m A×cm^(-2);气相色谱检测结果表明,阴极气相反应产物主要为CO,生成CO的电流效率最高可达93%。由于CO_2电还原反应自身有H_2O生成,阴极表面有H2析出。扫描电镜(SEM)检测表明,Au电极表面没有附着物生成。在N-甲基吡咯烷酮/四丁基高氯酸铵溶液中电还原CO_2,具有电解液性质稳定、电极不中毒的优点,因而具有潜在的工业化应用前景。
文摘在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid state transformer,SST)间输出电压偏差反馈调节,减小输出电压相角差和幅值差;采用基于模糊控制理论的瞬时环流反馈,进行动态虚拟阻抗调节,使得SST输出阻抗按额定功率精确匹配。仿真及分析表明,电压偏差反馈调节配合动态虚拟阻抗控制可以有效地抑制SST间环流,同时提高SST输出电压的稳定性。
文摘This paper briefs the basic objective of pursuing Renewable Portfolio Standard (RPS), puts forward a thinking about the scope and three modes of RPS-implementation in China and enumerates other possible measures, such as public bidding on concession, exemption from value-added tax, to promote wind power exploitation and development.
文摘Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.
基金supported by the Joint Fund of National Natural Science Foundation of China (U1664259)the National Natural Science Foundation of China (91434106)+1 种基金 the State Grid Fund (SGTYHT/15-JS-193)the Beijing municipal science and technology commission project (Z171100002017024)~~
文摘As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed.
文摘With the huge rise of energy demand,the power system in the current era is moving to a new standard with increased access to renewable energy sources(RESs)integrated with distribution generation(DG)network.The RESs necessitate interfaces for controlling the power generation.The multilevel inverter(MLI)can be exploited for RESs in two diverse modes,namely,the power generation mode(stand-alone mode),and compensator mode(statcom).Few works have been carried out in optimization of controller gains with the load variations of the single type such as reactive load variation in different cases.Nevertheless,this load type may be unbalanced hence,to overcome such issues.So,a sophisticated optimization algorithm is important.This paper aims to introduce a control design via an optimization assisted PI controller for a 7-level inverter.In the present technique,the gains of the PI controller are adjusted dynamically by the adopted hybrid scheme,grey optimizer with dragon levy update(GD-LU),based on the operating conditions of the system.Here,the gains are adjusted such that the error between the reference signal and fault signal should be minimal.Thus,better dynamic performance could be attained by the present optimized PI controller.The proposed algorithm is the combined version of grey wolf optimization(GWO)and dragonfly algorithm(DA).Finally,the performance of the proposed work is compared and validated over other state-of-the-art models concerning error measures.
文摘Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from "large wind power country" to "strong wind power country", opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.
文摘Solar energy is an important renewable energy.Developing photovoltaic power will not only relieve the energy supply-demand contradiction and optimize the energy structure,but also help to restructure this industry.This paper analyzes the status quo and the development prospects of China's photovoltaic power industry and its existing issues,and puts forward some suggestions and solutions for its healthy and orderly development.
文摘This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety,environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.
文摘Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with largescale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relationship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship between the wind turbine generator system and the components, relationship between wind energy technology and wind energy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regulation, as well as giving out some suggestions.
文摘Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study to provide an overview of the current condition of the Philippines' power system and discuss the energy flexibility in the Philippines' power system. A further discussion and recommendation is conducted in the end of the paper.
文摘Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This paper examined the displacement of coal power plant capacity from 2010 to 2050 by renewables with respect to three drivers assumed under various conditions: the American Recovery and Reinvestment Act (ARRA), Greenhouse Gas (GItG) policy, and varying plant capital cost cases. The results by 2050 illustrate that renewable market penetration captures anywhere from 1.9% to 6.4% of potential coal power generation capacity additions. Renewable power generation capacity additions is expected to outpace coal power plant additions by 89% with respect to ARRA in 2050, however with no GHG policy coal power generation capacity build-outs will outpace renewables by as high as 809%. Finally, coal power generation is still projected to be the largest single energy source contributor to the electricity market making up 28.0% of total available capacity, while renewables are expected to only make up 16.3% of total available capacity.