给求解无约束规划问题的记忆梯度算法中的参数一个特殊取法,得到目标函数的记忆梯度G o ldste in-L av in tin-Po lyak投影下降方向,从而对凸约束的非线性规划问题构造了一个记忆梯度G o ldste in-L av in tin-Po lyak投影算法,并在一...给求解无约束规划问题的记忆梯度算法中的参数一个特殊取法,得到目标函数的记忆梯度G o ldste in-L av in tin-Po lyak投影下降方向,从而对凸约束的非线性规划问题构造了一个记忆梯度G o ldste in-L av in tin-Po lyak投影算法,并在一维精确步长搜索和去掉迭代点列有界的条件下,分析了算法的全局收敛性,得到了一些较为深刻的收敛性结果.同时给出了结合FR,PR,HS共轭梯度算法的记忆梯度G o ldste in-L av in tin-Po lyak投影算法,从而将经典共轭梯度算法推广用于求解凸约束的非线性规划问题.数值例子表明新算法比梯度投影算法有效.展开更多
文摘给求解无约束规划问题的记忆梯度算法中的参数一个特殊取法,得到目标函数的记忆梯度G o ldste in-L av in tin-Po lyak投影下降方向,从而对凸约束的非线性规划问题构造了一个记忆梯度G o ldste in-L av in tin-Po lyak投影算法,并在一维精确步长搜索和去掉迭代点列有界的条件下,分析了算法的全局收敛性,得到了一些较为深刻的收敛性结果.同时给出了结合FR,PR,HS共轭梯度算法的记忆梯度G o ldste in-L av in tin-Po lyak投影算法,从而将经典共轭梯度算法推广用于求解凸约束的非线性规划问题.数值例子表明新算法比梯度投影算法有效.