Because co-occurring native and invasive plants are subjected to similar environmental selection pressures,the differences in functional traits and reproductive allocation strategies between native and invasive plants...Because co-occurring native and invasive plants are subjected to similar environmental selection pressures,the differences in functional traits and reproductive allocation strategies between native and invasive plants may be closely related to the success of the latter.Accordingly,this study examines differences in functional traits and reproductive allocation strategies between native and invasive plants in Eastern China.Plant height,branch number,reproductive branch number,the belowground-to-aboveground biomass ratio,and the reproductive allocation coefficient of invasive plants were all notably higher than those of native species.Additionally,the specific leaf area(SLA)values of invasive plants were remarkably lower than those of native species.Plasticity indexes of SLA,maximum branch angle,and branch number of invasive plants were each notably lower than those of native species.The reproductive allocation coefficient was positively correlated with reproductive branch number and the belowground-to-aboveground biomass ratio but exhibited negative correlations with SLA and aboveground biomass.Plant height,branch number,reproductive branch number,the belowground-to-aboveground biomass ratio,and the reproductive allocation coefficient of invasive plants may strongly influence the success of their invasions.展开更多
Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliabilit...Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliability criterion model, is established. ‘Next happen event’ is taken as impulse principle of simulator clock to determine the sequence of random event occurrence dynamically. The results show this method is feasible.展开更多
We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for alloca...We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.展开更多
As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC arch...As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.展开更多
The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear m...The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.展开更多
基金Project(31300343)supported by the National Natural Science Foundation of ChinaProject supported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,ChinaProject(12JDG086)supported by Research Foundation for Advanced Talents of Jiangsu University,China
文摘Because co-occurring native and invasive plants are subjected to similar environmental selection pressures,the differences in functional traits and reproductive allocation strategies between native and invasive plants may be closely related to the success of the latter.Accordingly,this study examines differences in functional traits and reproductive allocation strategies between native and invasive plants in Eastern China.Plant height,branch number,reproductive branch number,the belowground-to-aboveground biomass ratio,and the reproductive allocation coefficient of invasive plants were all notably higher than those of native species.Additionally,the specific leaf area(SLA)values of invasive plants were remarkably lower than those of native species.Plasticity indexes of SLA,maximum branch angle,and branch number of invasive plants were each notably lower than those of native species.The reproductive allocation coefficient was positively correlated with reproductive branch number and the belowground-to-aboveground biomass ratio but exhibited negative correlations with SLA and aboveground biomass.Plant height,branch number,reproductive branch number,the belowground-to-aboveground biomass ratio,and the reproductive allocation coefficient of invasive plants may strongly influence the success of their invasions.
基金SupportedbyNationalNatureScienceFoundation No .5 0 1770 17
文摘Discrete-event system simulation technology is used to analyze distribution system reliability in this paper. A simulation model, including entity state models, system state models, state transition models, reliability criterion model, is established. ‘Next happen event’ is taken as impulse principle of simulator clock to determine the sequence of random event occurrence dynamically. The results show this method is feasible.
文摘We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.
基金Supported by the Natural Science Foundation of China(No.61003032,61100118)Artificial Intelligence Key Laboratory of Sichuan Province of China(No.2010RY010,2011RYJ05)
文摘As feature sizes shrink,low energy consumption,high reliability and high performance become key objectives of network-on-chip(NoC) design.In this paper,an integrated approach is presented to map IP cores onto NoC architecture and assign voltage levels for each link,such that the communication energy is minimized under constraints of bandwidth and reliability.The design space is explored using tabu search.In order to select optimal voltage level for the links,an energy-efficiency driven heuristic algorithm is proposed to perform energy/reliability trade-off by exploiting communication slack.Experimental results show that the ordinary energy optimization techniques ignoring the influence of voltage on fault rates could lead to drastically decreased communication reliability of NoCs,and the proposed approach can produce reliable and energy-efficient implementations.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z312012B001)the National Program on Key Basic Research Project of China("973" Program)(Grant No.2013CB035405)the Combining Production and Research Program of Guangdong Province,China(Grant No.2010A090200009)
文摘The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.