期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
XGBoost-SHAP机器学习可解释框架用于轻度认知障碍分类研究
1
作者 易付良 陈杜荣 +7 位作者 杨慧 秦瑶 韩红娟 崔靖 白文琳 马艺菲 张荣 余红梅 《中国卫生统计》 CSCD 北大核心 2024年第3期423-429,共7页
目的利用机器学习算法对轻度认知障碍(mild cognitive impairment,MCI)亚型分类有利于患者的个性化治疗,而复杂模型常因分类过程的内部机制不可洞察而饱受诟病,本研究借助可解释技术梳理模型的输出结果,以期为相关领域研究者的决策提供... 目的利用机器学习算法对轻度认知障碍(mild cognitive impairment,MCI)亚型分类有利于患者的个性化治疗,而复杂模型常因分类过程的内部机制不可洞察而饱受诟病,本研究借助可解释技术梳理模型的输出结果,以期为相关领域研究者的决策提供统计支持。方法本研究联合极限梯度提升(eXtreme Gradient Boosting,XGBoost)与沙普利可加性(SHapley Additive exPlanations,SHAP)构建可解释性框架,用于遗忘型MCI(amnestic MCI,aMCI)和非遗忘型MCI(non-amnestic naMCI)的分类,并根据联合框架输出结果进行解读。结果联合框架输出aMCI和naMCI的最佳分界值为0.51,XGBoost分类准确率、灵敏度、特异度、F1值、AUC分别为92.81%、94.94%、90.54%、0.93、0.96。SHAP个性化预测结果,7号和31号示例个体被预测为aMCI的概率分别为0.27和0.91;全局性解释结果,不同个体随着CEREALL、ORIENT、CDRSUM、LCMF、RSUPMAR、RMEDORBF、LPOSCENM等指标的shapley值增大,患aMCI的风险越大,上述指标可以解释为aMCI发生的危险因素,而RENT、MMSEORDA、CRAFTVRS等则相反,可以解释为aMCI发生的保护因素。结论XGBoost-SHAP联合框架用于MCI亚型分类效果较为理想,实现了特定个体不同特征预测效果的比较、不同个体给定特征预测能力的判断,为相关研究者打开了洞察复杂模型内在机制的大门。 展开更多
关键词 机器学习 解释 极限梯度提升-沙普利可加 轻度认知障碍 分类
下载PDF
光伏阵列故障诊断的可解释性智能集成方法
2
作者 陈泽 刘文泽 +2 位作者 王康德 余涛 黄展鸿 《电力自动化设备》 EI CSCD 北大核心 2024年第6期18-25,共8页
针对现有光伏阵列故障检测和诊断智能方法存在的泛化性不强、可解释性差的问题,提出了一种可解释性智能集成方法。对采集的光伏阵列输出时序电压、电流波形进行特征挖掘,并将多个已成熟应用于光伏故障诊断的智能算法作为不同基学习器与... 针对现有光伏阵列故障检测和诊断智能方法存在的泛化性不强、可解释性差的问题,提出了一种可解释性智能集成方法。对采集的光伏阵列输出时序电压、电流波形进行特征挖掘,并将多个已成熟应用于光伏故障诊断的智能算法作为不同基学习器与元学习器,构建结合不同智能算法优势且更具泛化性的Stacking集成学习模型;以沙普利可加性特征解释方法为总框架,并结合局部近似可解释性方法,对模型训练过程与结果进行解释分析,通过获取各特征的贡献、分析该集成模型的决策机制,并了解其如何进行诊断,提高其可靠度和可信度。算例实验结果表明,所提可解释性智能集成方法在不同规模数据集的测试中均实现了高精度的故障诊断,模型的可解释性结果表明由该智能集成模型建立的故障特征和诊断结果的映射遵循物理见解,增强了智能方法的可信度和透明性。 展开更多
关键词 光伏阵列 故障诊断 Stacking集成 解释智能方法 沙普利可加特征解释方法
下载PDF
基于卷积神经网络的液化预测模型及可解释性分析
3
作者 龙潇 孙锐 郑桐 《岩土力学》 EI CAS CSCD 北大核心 2024年第9期2741-2753,共13页
常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上... 常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上覆应力、门槛加速度、循环剪应力比、剪切波速、震级与地表峰值加速度11个液化特征建立卷积神经网络(convolutional neural network,简称CNN)模型。引入边界合成少数过采样技术消除不平衡数据集的影响。将CNN模型与随机森林模型、逻辑回归模型、支持向量机模型、极致梯度提升模型和规范方法进行对比,并结合沙普利加性解释(SHapley Additive exPlanations,简称SHAP)分析输入特征对预测结果的影响趋势。结果表明,CNN模型准确率达92.58%,各项指标均优于其他4种机器学习模型和规范方法。对SHAP结果分析可知,修正标贯击数小于15的土层液化概率较高,循环剪应力比CSR小于0.25的土层更不易液化。各因素的影响规律均符合现有认知,预测模型合理可靠。 展开更多
关键词 机器学习 液化预测 卷积神经网络 边界合成少数过采样技术 沙普利加解释(shap)
下载PDF
基于可解释机器学习模型的南宁市野火灾害易发性研究
4
作者 岳韦霆 任超 +2 位作者 梁月吉 郭玥 张胜国 《科学技术与工程》 北大核心 2024年第2期858-870,共13页
野火易发性评价对野火灾害的前期预防以及灾害管理决策的制定至关重要。目前野火易发性的研究主要集中于提高模型的预测精度,而往往忽略对模型的内部决策机制进行解释分析。为此,构建了一种基于可解释机器学习的野火易发性模型,并详细... 野火易发性评价对野火灾害的前期预防以及灾害管理决策的制定至关重要。目前野火易发性的研究主要集中于提高模型的预测精度,而往往忽略对模型的内部决策机制进行解释分析。为此,构建了一种基于可解释机器学习的野火易发性模型,并详细分析了各因子对野火易发性预测结果的影响。以南宁市历史野火样本为基础,综合考虑样本的空间分布特征,选取高程、归一化植被指数(normalized difference vegetation index, NDVI)、年均降雨和平均气温等18项评价因子,利用分类和回归树(calssification and regression tree, CART)、随机森林(random forest, RF)、轻量的梯度提升机(light gradient boosting machine, LGBM)和极致梯度提升(extreme gradient boosting, XGBoost)4种机器学习模型构建野火易发性预测模型。基于性能最优的易发性模型,运用沙普利加和解释(shapley additive explanations, SHAP)方法完成特征全局性解释、依赖性分析和典型样本的局部性分析。结果表明:XGBoost较其他模型拥有更优的预测性能,其极高易发区位于南宁市西北部、东部及南部,占全域面积的39.113%;野火灾害易发性主要受NDVI、年均降雨、土壤类型等9项因子的影响;对典型历史野火样本的局部性解释结果可为南宁市指定区域的野火灾害的治理提供针对性参考和指导。 展开更多
关键词 野火灾害 野火易发评价 机器学习模型 shap 模型解释
下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测
5
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加解释模型(shap)
下载PDF
基于机器学习的公交驾驶员事故风险识别及影响因素研究 被引量:2
6
作者 朱彤 秦丹 +2 位作者 魏雯 任杰 冯移冬 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期23-30,共8页
为从公交驾驶员群体中识别出易发生事故的风险公交驾驶员,结合某市公交公司营运安全管理系统数据库、百度应用程序接口(API)及网络爬取技术,并应用K近邻算法补充缺失值,获取42条线路及1893名驾驶员的数据;基于驾驶员、车辆、线路特征、... 为从公交驾驶员群体中识别出易发生事故的风险公交驾驶员,结合某市公交公司营运安全管理系统数据库、百度应用程序接口(API)及网络爬取技术,并应用K近邻算法补充缺失值,获取42条线路及1893名驾驶员的数据;基于驾驶员、车辆、线路特征、违规行为、事故、管理等基本特征变量构造派生变量;采用包括递归特征消除、有惩罚项的逻辑回归、随机森林的集成方法选择特征;采用极致梯度提升(XGBoost)等6种机器方法分别建立分类模型,并采用贝叶斯方法优化超参数。结果表明:在构建的6个分类模型中,XGBoost方法构建的模型其受试者工作特征(ROC)曲线下的面积(AUC)评估结果最佳;运用贝叶斯方法优化模型,可以在一定程度上提升ROC的AUC指标;对于风险公交驾驶员预测准确率达到98.66%,运营单位还可以根据自身情况权衡虚报率与命中率代价。此外,车辆服役时间、违规次数等特征对于事故风险具有明显的非线性影响。 展开更多
关键词 风险公交驾驶员 机器学习 事故风险 极致梯度提升(XGBoost) shapley加解释(shap)值
下载PDF
共同富裕视角下巩固乡村振兴成果的多维农户发展研究——基于甘肃省白银市、金昌市调研数据
7
作者 吴洋 张钰颖 敬程皓 《科技和产业》 2023年第19期182-190,共9页
随着脱贫治理背景的全方位转换,为巩固阶段救助成果,研究关键影响因素及政策对西部地区经济发展和政策实施效果具有现实意义。选择具有区域性特征的白银市和金昌市,结合民政部实地调研数据,构建可持续生计理论下的多维农户发展现状指标... 随着脱贫治理背景的全方位转换,为巩固阶段救助成果,研究关键影响因素及政策对西部地区经济发展和政策实施效果具有现实意义。选择具有区域性特征的白银市和金昌市,结合民政部实地调研数据,构建可持续生计理论下的多维农户发展现状指标评价体系。使用随机森林、极限梯度提升(XGBoost)、可加性解释(SHAP)模型,筛选、识别、验证关键因素及特征重要性,结合甘肃省政策实施效果,提出可行性建议,为乡村区域性可持续发展政策制定实施提供方向。 展开更多
关键词 乡村振兴 多维识别指标体系 随机森林 极限梯度提升(XGBoost) 可加解释(shap)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部