When condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, a condensing flow was produced by an expansion of moist air in nozzle with circular bump mod...When condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, a condensing flow was produced by an expansion of moist air in nozzle with circular bump models and shock waves occurred in the supersonic parts of the flow fields. The experimental investigations were carried out to show the effects of initial conditions in the reservoir and nozzle geometries on the shock wave characteristics and the turbulences in the flow fields. Furthermore, in order to clarify the effect of condensation on the flow fields with shock waves, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitedifference scheme with a second order fractional step for time integration. As a result the effect of condensation on the aspect of flow field has been clarified.展开更多
In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical noz...In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.展开更多
文摘When condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, a condensing flow was produced by an expansion of moist air in nozzle with circular bump models and shock waves occurred in the supersonic parts of the flow fields. The experimental investigations were carried out to show the effects of initial conditions in the reservoir and nozzle geometries on the shock wave characteristics and the turbulences in the flow fields. Furthermore, in order to clarify the effect of condensation on the flow fields with shock waves, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitedifference scheme with a second order fractional step for time integration. As a result the effect of condensation on the aspect of flow field has been clarified.
文摘In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.