The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Persona...The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Personal Communications Systems). This paper investigated the combination of turbo codes with Unequal Error Protection (UEP) and 16-QAM modulation for EVRC codec of Rate 1 to get power and bandwidth efficient coding scheme. The results show that the UEP system outperforms the Equal Error Protection (EEP) one by 1.45 dB at BER of 10 -5.展开更多
Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consu...Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consumption in both commercial and residential buildings. Since the speed of a compressor driven by a conventional TPIM (two-phase induction motor) is fixed, it is either switched "ON", working at maximum capacity or switched "OFF" by a thermostat. While the most recent VF (variable-frequency) reluctance motor driven compressor delivers an enhanced performance over TPIM drive, it also provides variable-speed operation as the temperature changes, while improving the overall energy efficiency. This paper aimed to evaluate the performance of both TPIM and VF compressor drives for single-phase residential air-conditioning applications. Their cooling performance and harmonic distortions will be investigated. International standards for harmonic limits will also be applied in evaluating the distortions created by the VF drive.展开更多
The power-law fluid flow past a row of uniform placed square cylinders is investigated using the Lattice Boltzmann method (LBM).The flow is assumed to be two-dimensional and incompressible.The relaxation time is assum...The power-law fluid flow past a row of uniform placed square cylinders is investigated using the Lattice Boltzmann method (LBM).The flow is assumed to be two-dimensional and incompressible.The relaxation time is assumed to be shear-dependent and determined by using a variable parameter related to the local shear rate.The effects of both shear-thinning/shear-thickening property and the cylinder spacing on the confluence of the jets are mainly concerned.The bifurcation diagrams of the flow are obtained,which include confluences of double and quadruple jets.The results show that both the first and second pitchfork bifurcations are advanced due to the effect of the shear-thinning property,and postponed due to the shear-thickening property.展开更多
Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by d...Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by deformable dimples lying on the bottom wall of the channel.The first stage of the procedure consists in assessing the optimum geometry of the dimples.In this regard,the lower wall is allowed to freely deform itself according to the loop of control.This method is called the smart wall approach in this paper.By an analysis of the typical shape of the wall deformation thus obtained,it is found that dimples should be thinner than or comparable to the width of streaky structures in the spanwise direction and elongated in the streamwise direction.With active dimples as the wall-deformation actuators,a 15% drag reduction is obtained for the flow at Mam = 0.35 while the drag reduction rate is about 12% for the flow at Mam = 1.5.The fundamental mechanism of the drag reduction is then discussed in this paper.The drag reduction is believed to result from two aspects:the reduction of the mean streamwise velocity gradient near the deformable wall and the suppression of the turbulent fluctuations.展开更多
The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental c...The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.展开更多
基金National Natural Science Foundation ofChina( No.6972 5 0 0 1)
文摘The Enhanced Variable Rate Codec (EVRC) is a standard for the Speech Service Option 3 for Wideband Spread Spectrum Digital System, which has been employed in both IS-95 cellular systems and ANSI J-STC-008 PCS (Personal Communications Systems). This paper investigated the combination of turbo codes with Unequal Error Protection (UEP) and 16-QAM modulation for EVRC codec of Rate 1 to get power and bandwidth efficient coding scheme. The results show that the UEP system outperforms the Equal Error Protection (EEP) one by 1.45 dB at BER of 10 -5.
文摘Variable-voltage variable-frequency drives have been widely adopted by building services engineers in the area of HVAC (heating, ventilation and air conditioning) applications and became the substantial energy consumption in both commercial and residential buildings. Since the speed of a compressor driven by a conventional TPIM (two-phase induction motor) is fixed, it is either switched "ON", working at maximum capacity or switched "OFF" by a thermostat. While the most recent VF (variable-frequency) reluctance motor driven compressor delivers an enhanced performance over TPIM drive, it also provides variable-speed operation as the temperature changes, while improving the overall energy efficiency. This paper aimed to evaluate the performance of both TPIM and VF compressor drives for single-phase residential air-conditioning applications. Their cooling performance and harmonic distortions will be investigated. International standards for harmonic limits will also be applied in evaluating the distortions created by the VF drive.
基金assistance from the Natural Science Foundation of China(GrantNo. 10972115)
文摘The power-law fluid flow past a row of uniform placed square cylinders is investigated using the Lattice Boltzmann method (LBM).The flow is assumed to be two-dimensional and incompressible.The relaxation time is assumed to be shear-dependent and determined by using a variable parameter related to the local shear rate.The effects of both shear-thinning/shear-thickening property and the cylinder spacing on the confluence of the jets are mainly concerned.The bifurcation diagrams of the flow are obtained,which include confluences of double and quadruple jets.The results show that both the first and second pitchfork bifurcations are advanced due to the effect of the shear-thinning property,and postponed due to the shear-thickening property.
基金supported by the National Natural Science Foundation of China (Grant Nos.10932005 and 50910222)
文摘Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by deformable dimples lying on the bottom wall of the channel.The first stage of the procedure consists in assessing the optimum geometry of the dimples.In this regard,the lower wall is allowed to freely deform itself according to the loop of control.This method is called the smart wall approach in this paper.By an analysis of the typical shape of the wall deformation thus obtained,it is found that dimples should be thinner than or comparable to the width of streaky structures in the spanwise direction and elongated in the streamwise direction.With active dimples as the wall-deformation actuators,a 15% drag reduction is obtained for the flow at Mam = 0.35 while the drag reduction rate is about 12% for the flow at Mam = 1.5.The fundamental mechanism of the drag reduction is then discussed in this paper.The drag reduction is believed to result from two aspects:the reduction of the mean streamwise velocity gradient near the deformable wall and the suppression of the turbulent fluctuations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11132010 and 11072236)the 111 Project(GrantNo.B07033)
文摘The interaction of strain and vorticity in compressible turbulent boundary layers at Mach number 2.0 and 4.9 is studied by direct numerical simulation(DNS)of the compressible Navier-Stokes equations.Some fundamental characteristics have been studied for both the enstrophy producing and destroying regions.It is found that large enstrophy production is associated with high dissipation and high enstrophy,while large enstrophy destruction with moderate ones.The enstrophy production and destruction are also correlated with the dissipation production and destruction.Moreover,the enstrophy producing region has a distinct tendency to be‘sheet-like’structures and the enstrophy destroying region tends to be‘tube-like’in the inner layer.Correspondingly,the tendency to be‘sheet-like’or‘tube-like’structures is no longer obvious in the outer layer.Further,the alignment between the vorticity vector and the strain-rate eigenvector is analyzed in the flow topologies.It is noticed that the enstrophy production rate depends mainly on the alignment between the vorticity vector and the intermediate eigenvector in the inner layer,and the enstrophy production(destruction)mainly on the alignment between the vorticity vector and the extensive(compressive)eigenvector in the outer layer.