针对最大最小蚂蚁系统(MMAS)容易导致算法快速陷入局部最优的问题,提出一种基于可变天气因素的MMAS改进算法(variable weather MAX-MIN ant system,VW-MMAS)。通过由天气变化影响信息素的变化来改善MMAS的寻优过程,具体引入以下机制:在...针对最大最小蚂蚁系统(MMAS)容易导致算法快速陷入局部最优的问题,提出一种基于可变天气因素的MMAS改进算法(variable weather MAX-MIN ant system,VW-MMAS)。通过由天气变化影响信息素的变化来改善MMAS的寻优过程,具体引入以下机制:在信息素挥发机制方面,参考天气变化因素对蚂蚁觅食的影响,设置信息素挥发系数和蚁群数量;在算法陷入局部最优时,综合考虑TSP问题中城市间的距离,增强不是最优路径的信息素,扩大蚂蚁的搜索范围。应用该算法解决TSP问题,将仿真结果与其它算法进行比较,验证了该算法的有效性,提高了解的质量。展开更多
文摘针对最大最小蚂蚁系统(MMAS)容易导致算法快速陷入局部最优的问题,提出一种基于可变天气因素的MMAS改进算法(variable weather MAX-MIN ant system,VW-MMAS)。通过由天气变化影响信息素的变化来改善MMAS的寻优过程,具体引入以下机制:在信息素挥发机制方面,参考天气变化因素对蚂蚁觅食的影响,设置信息素挥发系数和蚁群数量;在算法陷入局部最优时,综合考虑TSP问题中城市间的距离,增强不是最优路径的信息素,扩大蚂蚁的搜索范围。应用该算法解决TSP问题,将仿真结果与其它算法进行比较,验证了该算法的有效性,提高了解的质量。