期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可变形非局部三维卷积网络的视频超分辨率重建算法 被引量:1
1
作者 蔡非凡 万旺根 《工业控制计算机》 2022年第3期54-56,共3页
视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局... 视频超分辨率(VSR)技术的目标是找出从相应的低分辨率(LR)视频序列重建高分辨率(HR)视频的最佳重建方案。提出了一种新颖的可变形非局部三维卷积网络(DNL-3DCNN)能有效地利用时空信息和参考帧与相邻帧之间的全局相关性。具体来说,非局部结构(Non-Local)同时增强了输入帧的时空信息中所需要的精细细节。此外,残差可变形三维卷积(R3D)获得了卓越的时空建模能力和运动感知建模的灵活性。此外,残差密集连接网络(RRDB)再进行重建处理,以充分利用输入到重建模块的层级特征。在基准数据集上进行的定量和定性实验表明,与现有的较为先进的VSR方法相比,所提方法在PSNR指标上提高了1.19db,在SSIM指标上提高了约5.95%。消融性实验确认提出的三个模块均带来了一定的性能增益,实验结果验证了所提算法在视频超分辨率时空信息重建领域的有效性。 展开更多
关键词 视频超分辨率 深度学习 可变形三维卷积网络 非局部神经网络 残差密集连接网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部