期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合分支定界的可变形部件模型的行人检测 被引量:2
1
作者 柴恩惠 智敏 《计算机应用》 CSCD 北大核心 2017年第7期2003-2007,2013,共6页
针对可变形部件模型(DPM)算法在行人检测领域中的检测精度高,但由于在特征提取和行人定位两步中的计算量过大,导致检测速度过慢而不能应用于实时行人检测的问题,提出了一种融合分支定界算法和级联检测算法的可变形部件模型(BBCDPM)算法... 针对可变形部件模型(DPM)算法在行人检测领域中的检测精度高,但由于在特征提取和行人定位两步中的计算量过大,导致检测速度过慢而不能应用于实时行人检测的问题,提出了一种融合分支定界算法和级联检测算法的可变形部件模型(BBCDPM)算法。首先,选取梯度方向直方图(HOG)特征作为描述人体目标的特征,从而生成特征金字塔;然后,进行可变形部件模型的建模,并使用隐变量支持向量机(LSVM)对模型进行训练;同时,为了提高行人检测的准确度,将传统可变形部件模型算法中的5个部件模型增加到了8个;最后,在利用了级联检测算法简化检测模型的基础上,结合了分支定界算法寻找最大值,排除大量不可能的对象假设,完成对行人目标的定位和检测。在INRIA数据集上进行了实验,结果表明,与传统DPM算法相比,该算法将准确率提高了12个百分点,且大幅提高了行人检测与识别的速度。 展开更多
关键词 分支定界算法 可变形部件模型算法 级联检测算法 梯度直方图特征 特征金字塔 隐变量支持向量机 行人检测
下载PDF
Norm-DP模型行人检测优化算法
2
作者 柴恩惠 马占飞 智敏 《计算机科学与探索》 CSCD 北大核心 2021年第3期545-552,共8页
传统深度金字塔模型作为一种有效的行人检测算法备受关注,融合可变形部件模型和卷积神经网络模型,但特征提取部分使用的算法像素区域的大小不同,导致模型之间不能完全融合,在行人数量多、姿势复杂和有遮挡情况时的检测效果不理想。因此... 传统深度金字塔模型作为一种有效的行人检测算法备受关注,融合可变形部件模型和卷积神经网络模型,但特征提取部分使用的算法像素区域的大小不同,导致模型之间不能完全融合,在行人数量多、姿势复杂和有遮挡情况时的检测效果不理想。因此,提出一种基于规范化函数的深度金字塔模型(Norm-DP)算法,使用规范化函数融合可变形部件模型和卷积神经网络模型,直接从金字塔特征中提取正负样本,使用隐变量支持向量机进行模型训练,结合柔性非最大抑制(soft-NMS)算法和边界框回归(BBR)算法对定位框进行优化。分别使用INRIA和MS COCO数据集进行实验验证,在行人数量多、姿势复杂和有遮挡情况时,检测精度高于最优的可变形部件模型算法、卷积神经网络算法、深度金字塔模型算法和结合区域选择的卷积神经网络算法。 展开更多
关键词 卷积神经网络(CNN) 可变形部件模型算法 规范化深度金字塔(Norm-DP) 柔性非最大抑制(Soft-NMS) 边界框回归(BBR)
下载PDF
基于可变形卷积神经网络的人体动作识别 被引量:6
3
作者 王雪娇 智敏 《计算机工程与科学》 CSCD 北大核心 2021年第1期105-111,共7页
针对复杂场景中人体动作识别准确率不高的问题,构建了一种基于可变形卷积网络(DCN)与可变形部件模型(DPM)融合改进的人体动作识别系统。首先将DPM的部件滤波器由5个增加到8个,并结合分支定界算法共同将准确率提高约11个百分点,速度提高... 针对复杂场景中人体动作识别准确率不高的问题,构建了一种基于可变形卷积网络(DCN)与可变形部件模型(DPM)融合改进的人体动作识别系统。首先将DPM的部件滤波器由5个增加到8个,并结合分支定界算法共同将准确率提高约11个百分点,速度提高3倍左右;其次利用DCN根据人体动作进行感兴趣点采样;然后将改进的DPM与DCN在可变形池化前进行融合;最后通过全连接层对输入数据进行动作的识别。实验结果表明,此系统能够在人体动作数据集上更快、更准确地得到识别结果。 展开更多
关键词 人体动作识别 可变形卷积 可变形感兴趣池化 可变形部件模型算法 卷积神经网络 分支定界算法
下载PDF
基于卷积神经网络的人体动作识别 被引量:7
4
作者 于华 智敏 《计算机工程与设计》 北大核心 2019年第4期1161-1166,共6页
针对复杂场景下人体动作识别精度不高的问题,提出融合改进的可变形部件模型算法(DPM)以及卷积神经网络模型算法(CNN)的人体动作识别算法。在特征提取阶段,为提高人体检测精度,采用改进的DPM算法将部件滤波器模型由5个增加到8个,同时结... 针对复杂场景下人体动作识别精度不高的问题,提出融合改进的可变形部件模型算法(DPM)以及卷积神经网络模型算法(CNN)的人体动作识别算法。在特征提取阶段,为提高人体检测精度,采用改进的DPM算法将部件滤波器模型由5个增加到8个,同时结合分支定界(BB)算法;CNN采用连续的卷积层提取特征,使用的CNN模型是经过梯度优化训练的针对人体动作识别的卷积神经网络,两个算法并行进行。在特征融合阶段,用加权求和的方式把两个模型提取的特征进行融合。用softmax分类器进行人体动作的分类识别。实验结果表明,该算法在标准的数据集、自搜集数据集上的精度较传统的机器学习方法提高了约10个百分点。 展开更多
关键词 卷积神经网络模型算法 可变形部件模型算法 特征提取 特征融合 人体动作识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部