期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
团队效能提升新视角:一致性能力、可变性能力及情境双元化作用 被引量:2
1
作者 林筠 杨翠萍 《科技进步与对策》 CSSCI 北大核心 2015年第8期24-28,共5页
随着环境瞬变与客户需求多样化,团队成员对内一致性与对外可变性展现出来的能力得到学术界越来越多的关注。基于一致性能力与可变性能力的情境双元化视角,采用问卷调查法,探讨两种能力及其交互作用对团队效能的作用效果,分析团队报酬依... 随着环境瞬变与客户需求多样化,团队成员对内一致性与对外可变性展现出来的能力得到学术界越来越多的关注。基于一致性能力与可变性能力的情境双元化视角,采用问卷调查法,探讨两种能力及其交互作用对团队效能的作用效果,分析团队报酬依赖性与决策集中化在两种能力与团队效能之间的调节作用。研究结果表明:一致性能力、可变性能力均与团队效能显著正相关,团队报酬依赖性可促进两种能力作用的发挥,而决策集中化对两种能力作用的发挥具有抑制作用。研究知识团队中的双元化作用机理,有助于掌握知识团队效能提高途径,为知识团队管理提供可操作性理论指导。 展开更多
关键词 团队效能 情境双元化 一致性能力 可变性能力 决策集中化 报酬依赖性
下载PDF
Modeling hot strip rolling process under framework of generalized additive model 被引量:3
2
作者 LI Wei-gang YANG Wei +2 位作者 ZHAO Yun-tao YAN Bao-kang LIU Xiang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2379-2392,共14页
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener... This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling. 展开更多
关键词 industrial big data generalized additive model mechanical property prediction deformation resistance prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部