期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于可变时序移位Transformer-LSTM的集成学习矿压预测方法
被引量:
4
1
作者
李泽西
《工矿自动化》
CSCD
北大核心
2023年第7期92-98,共7页
现有的矿压预测模型多为依赖固定长度时序序列特征的单一预测模型,难以准确捕捉矿压时序数据的复合特征,影响矿压预测的准确度。针对该问题,提出一种基于可变时序移位Transformer-长短时记忆(LSTM)的集成学习矿压预测方法。基于拉依达...
现有的矿压预测模型多为依赖固定长度时序序列特征的单一预测模型,难以准确捕捉矿压时序数据的复合特征,影响矿压预测的准确度。针对该问题,提出一种基于可变时序移位Transformer-长短时记忆(LSTM)的集成学习矿压预测方法。基于拉依达准则和拉格朗日插值法,剔除矿压监测数据中的异常值,插入缺失值,并进行归一化预处理;提出可变时序移位策略,划分不同尺度的矿压时序数据,避免固定长度时序序列可能存在的数据偏移问题;在此基础上,构建基于Transformer-LSTM的集成学习矿压预测模型,通过结合注意力机制和准确的时序特征表示能力,多层次捕捉矿压变化规律的动态特征,采用集成学习的投票算法,联合预测矿压数据,克服单一预测模型的局限性。实验结果表明:采用集成学习的投票算法可降低矿压预测平均绝对误差(MAE)和均方根误差(RMSE)的波动性,有效减小不同尺度特征序列对矿压预测结果的敏感性影响;Transformer-LSTM模型在2个综采工作面顶板矿压数据集上预测结果的MAE较Transformer模型分别提高了8.9%和9.5%,RMSE分别提高了12.7%和16.5%,且高于反向传播(BP)神经网络模型和LSTM模型,有效提升了矿压预测准确度。
展开更多
关键词
矿压预测
可变时序移位
Transformer-LSTM模型
集成学习
投票算法
下载PDF
职称材料
题名
基于可变时序移位Transformer-LSTM的集成学习矿压预测方法
被引量:
4
1
作者
李泽西
机构
西安科技大学通信与信息工程学院
出处
《工矿自动化》
CSCD
北大核心
2023年第7期92-98,共7页
文摘
现有的矿压预测模型多为依赖固定长度时序序列特征的单一预测模型,难以准确捕捉矿压时序数据的复合特征,影响矿压预测的准确度。针对该问题,提出一种基于可变时序移位Transformer-长短时记忆(LSTM)的集成学习矿压预测方法。基于拉依达准则和拉格朗日插值法,剔除矿压监测数据中的异常值,插入缺失值,并进行归一化预处理;提出可变时序移位策略,划分不同尺度的矿压时序数据,避免固定长度时序序列可能存在的数据偏移问题;在此基础上,构建基于Transformer-LSTM的集成学习矿压预测模型,通过结合注意力机制和准确的时序特征表示能力,多层次捕捉矿压变化规律的动态特征,采用集成学习的投票算法,联合预测矿压数据,克服单一预测模型的局限性。实验结果表明:采用集成学习的投票算法可降低矿压预测平均绝对误差(MAE)和均方根误差(RMSE)的波动性,有效减小不同尺度特征序列对矿压预测结果的敏感性影响;Transformer-LSTM模型在2个综采工作面顶板矿压数据集上预测结果的MAE较Transformer模型分别提高了8.9%和9.5%,RMSE分别提高了12.7%和16.5%,且高于反向传播(BP)神经网络模型和LSTM模型,有效提升了矿压预测准确度。
关键词
矿压预测
可变时序移位
Transformer-LSTM模型
集成学习
投票算法
Keywords
mine pressure prediction
variable time series shift
Transformer-LSTM model
ensemble learning
voting algorithm
分类号
TD323 [矿业工程—矿井建设]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于可变时序移位Transformer-LSTM的集成学习矿压预测方法
李泽西
《工矿自动化》
CSCD
北大核心
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部