A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range o...A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.展开更多
The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climat...The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year(HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer(MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin(NJ), Downstream Songhua River Basin(SD) and Upstream Songhua River Basin(SU). Snow cover duration(SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors(elevation, aspect and slope), two climatic factors(precipitation and air temperature) and one vegetation index(Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree(CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.展开更多
In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological prope...In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological properties of pears stored at 5, 15, 25 ℃ and variable (fluctuating) temperature for 12 days were evaluated in terms of elasticity and viscosity parameters using creep tests. The elasticity and viscosity parameters in creep tests in general decreased with increase in storage time both under constant and variable storage conditions. For the variable storage condition, a bulk mean temperature calculated to account for a series combination of storage time and temperature to which the pears subjected. The changes in rheological properties due to variable storage temperature were described as a function of storage time. The result indicated that except the viscosity parameter of the Maxwell component of the four-element model, it was possible to describe the changes in rheological properties as a function of storage time, which are better physical parameters to estimate the quality of pears.展开更多
A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy d...A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy diphenylsulfone (DPODPS), 4,4'- di(2-methylphenoxy) diphenylsulfone (o-Me-DPODPS), 4,4'- di(3-methylphenoxy) diphenylsulfone (m-Me-DPODPS), 4,4'- di (2,6-bimethylphenoxy) biphenylsulfone(o-Me2-DPODPS) respectively, in a mixture of 1,2-dichloroethane (DCE) and N-methylpyrrolidone (NMP). These reactions were catalyzed by anhydrous aluminum chloride (AlCl). The characteristic of copolymers were studied by means of advanced analytical techniques such as FT-IR,1H-NMR, DSC, TGA and WAXD. The results show glass transition temperature (Tg) in the range of 193-206℃, thermally stable in excess of 434℃ and excellent solubility in polar solvents. Methyl-substituted Poly(aryl ether sulfone ketone)s had higher glass transition temperatures, lower initial decomposition temperatures than the unsubstituted ones.展开更多
Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation i...Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation in the Polish Carpathians. This study consists of climatological analyses for the historical period 1851-2010 and future projections for 2021-2100. The results confirm that there has been significant warming of the area and that this warming has been particularly pronounced over the last few decades and will continue in the oncoming years.Climate change is most evident in the foothills;however, these are the highest summits which have experienced the most intensive increases in temperature during the recent period. Precipitation does not demonstrate any substantial trend and has high year-to-year variability. The distribution of the annual temperature contour lines modelled for selected periods provides evidence of the upward shift of vertical climate zones in the Polish Carpathians,which reach approximately 350 meters, on average,what indicates further ecological consequences as ecosystems expand or become extinct and when there are changes in the hydrological cycle.展开更多
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t...The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.展开更多
The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly c...The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.展开更多
Lake Vrana on the island of Cres is one of the largest fresh water features on Mediterranean islands. The maximum depth of the lake is 72 m and it stores 220 million m3 of fresh water. The paper provides an overview o...Lake Vrana on the island of Cres is one of the largest fresh water features on Mediterranean islands. The maximum depth of the lake is 72 m and it stores 220 million m3 of fresh water. The paper provides an overview of lake and groundwater temperature measurements to date and recent activities within the EU project "CC-WaterS (Climate Change and Impacts on Water Supply)". Groundwater temperatures in the lake surrounding are almost constant throughout the year, in the range from 14.6 ℃ to 13.1 ℃, while thermodynamic cycle of the lake conforms to the characteristics of a monomictic, medium depth lake in the moderate climate belt. Present and future climate simulations using three limited area models were analyzed (Aladin, Promes and RegCM3), they pointed out further air temperature increase in range of 0.27 ℃/10 yrs to 0.32 ℃/10 yrs. The significant changes of precipitation rates were not indicated. Considering increasing water consumption from the lake, already asserted negative trends, indicated climate changes and possible effects on the lake recharge, it is necessary to establish continual monitoring of parameters that describe lake system behaviour and periodically analyze lake conditions, especially with respect to the extraction for the public water supply.展开更多
Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as ...Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly.Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reaction once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature(Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.展开更多
In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly pe...In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.展开更多
The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with ...The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.展开更多
A large and reversible magnetocaloric effect is found in the compound DyB2, which is associated with two successive mag- netic transitions: a spin-reorientation-like transition followed by a ferromagnetic-paramagneti...A large and reversible magnetocaloric effect is found in the compound DyB2, which is associated with two successive mag- netic transitions: a spin-reorientation-like transition followed by a ferromagnetic-paramagnetic transition. These two transitions appreciably enlarge the magnetic-refrigeration temperature window and yield a huge refrigeration capacity of 610 J kg^-1, with a maximum magnetic entropy change -ASmax of 17 J kg^-1K^-1, at a magnetic-field change of 5 T. The corresponding values for low magnetic-field change of 2 T are 193 J kg^-1 and 7.4 J kg-lK^-1, respectively.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
文摘A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.
基金Under the auspices of National Natural Science Foundation of China(No.41471291,41801283,41070104)Startup Foundation for Doctors of Jilin Jianzhu University(No.861111)13th Five-Year Plan of Technical and Social Research Project for Jilin Colleges(No.JJKH20170257KJ)
文摘The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year(HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer(MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin(NJ), Downstream Songhua River Basin(SD) and Upstream Songhua River Basin(SU). Snow cover duration(SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors(elevation, aspect and slope), two climatic factors(precipitation and air temperature) and one vegetation index(Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree(CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.
文摘In order to better design, fabricate and control pear handling machine, we should take into account mechanical and rheological properties of pear fruits as related to handling process. The changes in rheological properties of pears stored at 5, 15, 25 ℃ and variable (fluctuating) temperature for 12 days were evaluated in terms of elasticity and viscosity parameters using creep tests. The elasticity and viscosity parameters in creep tests in general decreased with increase in storage time both under constant and variable storage conditions. For the variable storage condition, a bulk mean temperature calculated to account for a series combination of storage time and temperature to which the pears subjected. The changes in rheological properties due to variable storage temperature were described as a function of storage time. The result indicated that except the viscosity parameter of the Maxwell component of the four-element model, it was possible to describe the changes in rheological properties as a function of storage time, which are better physical parameters to estimate the quality of pears.
基金This work was supported by National Science Foundation of China (No. 20264001 ), National Science Foundation of Jiangxi Province, Innovation Fund for Technology Based Firms of China (No. 06C26213601342).
文摘A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy diphenylsulfone (DPODPS), 4,4'- di(2-methylphenoxy) diphenylsulfone (o-Me-DPODPS), 4,4'- di(3-methylphenoxy) diphenylsulfone (m-Me-DPODPS), 4,4'- di (2,6-bimethylphenoxy) biphenylsulfone(o-Me2-DPODPS) respectively, in a mixture of 1,2-dichloroethane (DCE) and N-methylpyrrolidone (NMP). These reactions were catalyzed by anhydrous aluminum chloride (AlCl). The characteristic of copolymers were studied by means of advanced analytical techniques such as FT-IR,1H-NMR, DSC, TGA and WAXD. The results show glass transition temperature (Tg) in the range of 193-206℃, thermally stable in excess of 434℃ and excellent solubility in polar solvents. Methyl-substituted Poly(aryl ether sulfone ketone)s had higher glass transition temperatures, lower initial decomposition temperatures than the unsubstituted ones.
基金the FORECOM project (Forest cover changes in mountainous regions – drivers, trajectories and implications, PSRP 008/2010)supported by a grant from Switzerland through the Swiss contribution to the enlarged European Union
文摘Mountain regions are sensitive to climate changes, which make them good indicators of climate change. The aim of this study is to investigate the spatial and temporal variability of air temperature and precipitation in the Polish Carpathians. This study consists of climatological analyses for the historical period 1851-2010 and future projections for 2021-2100. The results confirm that there has been significant warming of the area and that this warming has been particularly pronounced over the last few decades and will continue in the oncoming years.Climate change is most evident in the foothills;however, these are the highest summits which have experienced the most intensive increases in temperature during the recent period. Precipitation does not demonstrate any substantial trend and has high year-to-year variability. The distribution of the annual temperature contour lines modelled for selected periods provides evidence of the upward shift of vertical climate zones in the Polish Carpathians,which reach approximately 350 meters, on average,what indicates further ecological consequences as ecosystems expand or become extinct and when there are changes in the hydrological cycle.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia
文摘The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.
文摘The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.
文摘Lake Vrana on the island of Cres is one of the largest fresh water features on Mediterranean islands. The maximum depth of the lake is 72 m and it stores 220 million m3 of fresh water. The paper provides an overview of lake and groundwater temperature measurements to date and recent activities within the EU project "CC-WaterS (Climate Change and Impacts on Water Supply)". Groundwater temperatures in the lake surrounding are almost constant throughout the year, in the range from 14.6 ℃ to 13.1 ℃, while thermodynamic cycle of the lake conforms to the characteristics of a monomictic, medium depth lake in the moderate climate belt. Present and future climate simulations using three limited area models were analyzed (Aladin, Promes and RegCM3), they pointed out further air temperature increase in range of 0.27 ℃/10 yrs to 0.32 ℃/10 yrs. The significant changes of precipitation rates were not indicated. Considering increasing water consumption from the lake, already asserted negative trends, indicated climate changes and possible effects on the lake recharge, it is necessary to establish continual monitoring of parameters that describe lake system behaviour and periodically analyze lake conditions, especially with respect to the extraction for the public water supply.
基金Supported by the National Science and Technology Key Supporting Project(2013BAF08B05)the National Natural Science Foundation of China(21176137)
文摘Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly.Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reaction once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature(Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.
文摘In the last years, biodiesel production has been on a steady increase due to it is renewable and biodegradable fuel. The process to obtain biodiesel can be carried out using different raw materials. It is conlmonly performed by transesterification reaction of vegetable oils with methanol and using a homogeneous or heterogeneous catalyst. This work seeks to compare the results produced in transesterification of wasted cooking oil and chicken fat by homogeneous catalysis with NaOH. Due to in each case triglyceride comes from different raw materials, operation conditions differ slightly, which is more evident in the values used for the temperature. For chicken fat was used temperature variations between 35 ℃ and 55 ℃, varying catalyst in percentages between 0.3% and 0.7% with a molar ratio 6:1 in all cases and a reaction time of I h. Likewise, the conditions used in the tmnsesterification process of waste cooking oil were temperature between 50 ℃ and 60 ℃ with a molar ratio 6/1 and 9/1 for alcohol and oil, and catalyst percentage between 0.5% and 0.7% by weight. The yields obtained were between 78% and 94%, or 83% and 95%, for chicken fat and wasted cooking oil, respectively.
文摘The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.
基金supported by the National Natural Science Foundation of China (Grant No. 50831006)the National Basic Research Program of China ("973" Project) (Grant No. 2010CB934603)
文摘A large and reversible magnetocaloric effect is found in the compound DyB2, which is associated with two successive mag- netic transitions: a spin-reorientation-like transition followed by a ferromagnetic-paramagnetic transition. These two transitions appreciably enlarge the magnetic-refrigeration temperature window and yield a huge refrigeration capacity of 610 J kg^-1, with a maximum magnetic entropy change -ASmax of 17 J kg^-1K^-1, at a magnetic-field change of 5 T. The corresponding values for low magnetic-field change of 2 T are 193 J kg^-1 and 7.4 J kg-lK^-1, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.