Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to con...Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to continuously adjustable pressure, adjustable flow control to achieve. In this paper, the structure design of a combination of oil tanks, combined with oil circuit examples in the case of no need to adjust the pressure, adjust the flow rate, to achieve the high speed, light load of the typical operating requirements and hydraulic servo feedback.展开更多
A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation...A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.展开更多
文摘Hydraulic equipment in engineering, in different working stages, different speed, load, variable load and variable speed is one of the most frequently encountered problems, to solve this problem is usually used to continuously adjustable pressure, adjustable flow control to achieve. In this paper, the structure design of a combination of oil tanks, combined with oil circuit examples in the case of no need to adjust the pressure, adjust the flow rate, to achieve the high speed, light load of the typical operating requirements and hydraulic servo feedback.
基金the National Natural Science Foundation of China(Nos.10602034,10572088)
文摘A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.