Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applicat...Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.展开更多
An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas m...An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas much significantly greater than that indicated by pH measured using a PH meter, particularly for theextremely acidic soil samples. This is because the total soluble acidity of the extremely acidic soil sampleswas mainly composed of various soluble Al and Fe species, possibly in forms of Al sulfate complexes (e.g.,AISO4) and ferrous Fe (Fe2+). It is therefore suggested not to use pH alone as an indicator of soluble acidityin ASS, particularly for extremely acidic ASS. It is also likely that AISO4+ actively pericipated in cationexchange reactions. It appears that the possible involvement of this Al sulfate canon in the canon adsorptionhas significant effect on increasing the amount of acidity being adsorbed by the soils.展开更多
In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined...In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined as the combination of one or more singular emotions from following 8 basic emotion categories: joy, love, expectation, sur- prise, anxiety, sorrow, anger and hate. We use a hi- erarchical Bayesian network to model the emotions and topics in the text. Both the complex emotions and topics are drawn from raw texts, without con- sidering any complicated language features. Our ex- periment shows promising results of word emotion prediction, which outperforms the traditional parsing methods such as the Hidden Markov Model and the Conditional Random Fields(CRFs) on raw text. We also explore the topic distribution by examining the emotion topic variation in an emotion topic diagram.展开更多
TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunligh...TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunlight or visible-light harvesting efficiency and fast recombination rate of the photogenerated charge carriers severely limit the practical applications of TiO2.To overcome these problems,the present work demonstrates a facile in-situ co-condensation method combined with hydrothermal treatment to prepare a series of graphitized carbon/TiO2 composite photocatalysts,and anatase TiO2 phase andp-p-conjugated polycyclic aromatic carbon structure are created simultaneously.As-prepared TiO2/C composites exhibit remarkably high visible-light photocatalytic activity in the degradation of aqueous emerging phenolic pollutants,acetaminophen(APAP)and methylparaben(MPB),and apparent rate constant of the TiO2/C composite with carbon doping level of 10.3%for APAP and MPB removal is 7.6 and 2.8 times higher than that of bare TiO2,and 6.2 and 2.6 times higher than that of Degussa P25 TiO2.Based on the results of photoelectrochemical experiments,indirect chemical probe measurements,and ESR spectroscopy,it is verified that doping TiO2 with graphitized carbon is responsible for this enhanced photocatalytic activity,which renders the improved visible-light harvesting ability,the accelerated separation of the photogenerated charge carriers,and enlarged BET surface areas.Through analyzing the intermediates yielded in the photodegradation process,the pathway of visible-light photocatalytic degradation of APAP and MPB over the TiO2/C composite is proposed.展开更多
A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structu...A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.展开更多
We show that higher-dimensional integrable systems including the (2+1)-dimensional generalized sine-Gordon equation and the (2+1)-dimensional complex mKdV equation are associated with motions of surfaces inducedby end...We show that higher-dimensional integrable systems including the (2+1)-dimensional generalized sine-Gordon equation and the (2+1)-dimensional complex mKdV equation are associated with motions of surfaces inducedby endowing with an extra space variable to the motions of curves on S^2(R) and S^3(R).展开更多
Giant fibrovascular polyps of the esophagus and hypopharynx are rare benign esophageal tumors. They arise most commonly in the upper esophagus and may, rarely, originate in the hypopharynx. They can vary significantly...Giant fibrovascular polyps of the esophagus and hypopharynx are rare benign esophageal tumors. They arise most commonly in the upper esophagus and may, rarely, originate in the hypopharynx. They can vary significantly in size. Even though they are benign, they may be lethal due to either bleeding or, rarely, asphyxiation if a large polyp is regurgitated. Patients commonly present with dysphagia or hematemesis. The polyps may not be well visualized on endoscopy and imaging plays a vital role in aiding diagnosis as well as providing important information for preoperative planning, such as the location of the pedicle, the vascularity of the polyp and the tissue elements of the mass. They can also be recurrent in rare cases, especially if the resection margins of the base are involved. We review the recent literature and report a case of a 61-year-old man with a recurrent giant esophageal fibrovascular polyp with illustrative contrast barium swallow, CT and intra-operative images, who required several surgeries via a combination of endoscopic, trans-oral, trans-cervical, trans-thoracic and trans-abdominal approaches.展开更多
Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied t...Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.展开更多
Thermal degradation processes and kinetics of composites based on ultrafine coal powder and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low density polyethylene (LDPE) at differe...Thermal degradation processes and kinetics of composites based on ultrafine coal powder and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low density polyethylene (LDPE) at different compositions were studied by means of thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) in present work, to improve understandings in stabilization or degradation control of the composite. The results indicated that the coal facilitates melting of the polyethylene slightly before onset temperature, some chemical interactions were also observed in the composite. Coal participates in chain initiation, transfer and termination of the polymer, influences on thermal stability of composites lie in hydrogen acceptor effect of the coal. The thermal decomposition of the coals and the polymers can be modeled via the first order parallel reactions models in low temperatLire range. In higher temperature case, combination of aromatic macromolecular radical from coal with polymeric macromolecular radical gives rise to the greater activation energies of decomposition, thermal decomposition of the composites comply to step-by-step consecutive reactions models. Coal can be used as important degradation controlling additive to prepare functional materials.展开更多
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ...A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.展开更多
The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of ...The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment.展开更多
This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocatio...This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.展开更多
Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, ca...Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nbl.33Tio.6704 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Tio.6704 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 ℃. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.6704 composite fuel electrode at 830 ℃. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.展开更多
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Natural Science Foundation of China (U1232119, 21403172)the Sichuan Youth Science and Technology Foundation (2013JQ0034, 2014JQ0017)the Innovative Research Team of Sichuan Province (2016TD0011)~~
文摘Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.
文摘An extremely acidified acid sulfate soil (ASS) was investigated to characterize its soluble and exchangeableacidity. The results showed that soluble acidity of a sample determined by titration with a KOH solutionwas much significantly greater than that indicated by pH measured using a PH meter, particularly for theextremely acidic soil samples. This is because the total soluble acidity of the extremely acidic soil sampleswas mainly composed of various soluble Al and Fe species, possibly in forms of Al sulfate complexes (e.g.,AISO4) and ferrous Fe (Fe2+). It is therefore suggested not to use pH alone as an indicator of soluble acidityin ASS, particularly for extremely acidic ASS. It is also likely that AISO4+ actively pericipated in cationexchange reactions. It appears that the possible involvement of this Al sulfate canon in the canon adsorptionhas significant effect on increasing the amount of acidity being adsorbed by the soils.
基金supported by the Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research under Grant No.22240021the Grant-in-Aid for Challenging Exploratory Research under Grant No.21650030
文摘In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined as the combination of one or more singular emotions from following 8 basic emotion categories: joy, love, expectation, sur- prise, anxiety, sorrow, anger and hate. We use a hi- erarchical Bayesian network to model the emotions and topics in the text. Both the complex emotions and topics are drawn from raw texts, without con- sidering any complicated language features. Our ex- periment shows promising results of word emotion prediction, which outperforms the traditional parsing methods such as the Hidden Markov Model and the Conditional Random Fields(CRFs) on raw text. We also explore the topic distribution by examining the emotion topic variation in an emotion topic diagram.
文摘TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunlight or visible-light harvesting efficiency and fast recombination rate of the photogenerated charge carriers severely limit the practical applications of TiO2.To overcome these problems,the present work demonstrates a facile in-situ co-condensation method combined with hydrothermal treatment to prepare a series of graphitized carbon/TiO2 composite photocatalysts,and anatase TiO2 phase andp-p-conjugated polycyclic aromatic carbon structure are created simultaneously.As-prepared TiO2/C composites exhibit remarkably high visible-light photocatalytic activity in the degradation of aqueous emerging phenolic pollutants,acetaminophen(APAP)and methylparaben(MPB),and apparent rate constant of the TiO2/C composite with carbon doping level of 10.3%for APAP and MPB removal is 7.6 and 2.8 times higher than that of bare TiO2,and 6.2 and 2.6 times higher than that of Degussa P25 TiO2.Based on the results of photoelectrochemical experiments,indirect chemical probe measurements,and ESR spectroscopy,it is verified that doping TiO2 with graphitized carbon is responsible for this enhanced photocatalytic activity,which renders the improved visible-light harvesting ability,the accelerated separation of the photogenerated charge carriers,and enlarged BET surface areas.Through analyzing the intermediates yielded in the photodegradation process,the pathway of visible-light photocatalytic degradation of APAP and MPB over the TiO2/C composite is proposed.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project(2018ZX07110003)Key Research and Development Project of Shandong Province(2018CXGC1007)~~
文摘A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.
基金National Natural Science Foundation of China under Grant No.10671156the Program for New Century Excellent Talents in Universities under Grant No.NCET-04-0968
文摘We show that higher-dimensional integrable systems including the (2+1)-dimensional generalized sine-Gordon equation and the (2+1)-dimensional complex mKdV equation are associated with motions of surfaces inducedby endowing with an extra space variable to the motions of curves on S^2(R) and S^3(R).
文摘Giant fibrovascular polyps of the esophagus and hypopharynx are rare benign esophageal tumors. They arise most commonly in the upper esophagus and may, rarely, originate in the hypopharynx. They can vary significantly in size. Even though they are benign, they may be lethal due to either bleeding or, rarely, asphyxiation if a large polyp is regurgitated. Patients commonly present with dysphagia or hematemesis. The polyps may not be well visualized on endoscopy and imaging plays a vital role in aiding diagnosis as well as providing important information for preoperative planning, such as the location of the pedicle, the vascularity of the polyp and the tissue elements of the mass. They can also be recurrent in rare cases, especially if the resection margins of the base are involved. We review the recent literature and report a case of a 61-year-old man with a recurrent giant esophageal fibrovascular polyp with illustrative contrast barium swallow, CT and intra-operative images, who required several surgeries via a combination of endoscopic, trans-oral, trans-cervical, trans-thoracic and trans-abdominal approaches.
文摘Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.
基金National Natural Science Foundation of China(20276056)the Science and Technology Key Problem Plan of Shannxi Province(No.2000K10-G9)
文摘Thermal degradation processes and kinetics of composites based on ultrafine coal powder and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low density polyethylene (LDPE) at different compositions were studied by means of thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) in present work, to improve understandings in stabilization or degradation control of the composite. The results indicated that the coal facilitates melting of the polyethylene slightly before onset temperature, some chemical interactions were also observed in the composite. Coal participates in chain initiation, transfer and termination of the polymer, influences on thermal stability of composites lie in hydrogen acceptor effect of the coal. The thermal decomposition of the coals and the polymers can be modeled via the first order parallel reactions models in low temperatLire range. In higher temperature case, combination of aromatic macromolecular radical from coal with polymeric macromolecular radical gives rise to the greater activation energies of decomposition, thermal decomposition of the composites comply to step-by-step consecutive reactions models. Coal can be used as important degradation controlling additive to prepare functional materials.
基金Supported by the National Natural Science Foundation of China(21406124)
文摘A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.
文摘The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment.
基金Under the auspices of National Natural Science Foundation of China (No. 70903061,41171440)National Public Benefit (Land) Research Foundation of China (No. 201111014)Fundamental Research Funds for the Central Universities (No. 2011YXL055)
文摘This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.
文摘Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nbl.33Tio.6704 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Tio.6704 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 ℃. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.6704 composite fuel electrode at 830 ℃. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.