-
题名可学习动态分组卷积神经网络的大规模点云分割
- 1
-
-
作者
康玥
杨军
-
机构
兰州交通大学自动化与电气工程学院
兰州交通大学电子与信息工程学院
-
出处
《计算机工程与应用》
CSCD
北大核心
2024年第10期217-226,共10页
-
基金
国家自然科学基金(42261067)
兰州市人才创新创业项目(2020-RC-22)
+1 种基金
兰州交通大学天佑创新团队(TY202002)
甘肃省教育厅优秀研究生“创新之星”项目(2022CXZX-613)。
-
文摘
针对现有大规模点云语义分割算法提取特征时冗余干扰信息过多,导致神经网络分割性能较差的问题,提出可学习动态分组卷积神经网络架构,高效准确地实现大规模点云分割。对输入点云以分组的方式进行局部几何特征提取,并通过动态筛选和修剪冗余特征通道来减少无用特征信息对神经网络特征识别的干扰,进一步提高网络模型语义分割精度。构建位置编码模块,将点云位置特征映射到高维频域空间,使神经网络充分挖掘点云频域特征信息,增强特征的丰富性。对提取到的局部几何特征和全局单点位置特征进行融合,并构建可学习动态分组卷积神经网络,完成解码得到最终分割结果。实验结果表明,该算法在大规模点云分割数据集S3DIS和SemanticKITTI上的mIoU分别为69.6%和58.3%。与现有点云语义分割方法相比,所提出的网络模型具有更高的分割准确率和较低的参数量。
-
关键词
大规模点云
语义分割
可学习动态分组卷积
位置编码
-
Keywords
large-scale point cloud
semantic segmentation
learnable dynamic grouping convolution
positional encoding
-
分类号
TP391.4
[自动化与计算机技术—计算机应用技术]
-