Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occur...Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occurs. An alternative algorithm using particle-based method is then proposed which can detect the collision among non-rigid deformable polygonal models. However, the original particle-based collision detection algorithm might not be sufficient enough in some situations due to the improper particle dispersion. Therefore, this research presents an improved algorithm which provides a particle to detect in each separated area so that particles always covered all over the object. The surface partitioning can be efficiently performed by using LBG quantization since it can classify object vertices into several groups base on a number of factors as required. A particle is then assigned to move between vertices in a group by the attractive forces received from other particles on neighbouring objects. Collision is detected when the distance between a pair of corresponding particles becomes very small. Lastly, the proposed algo- rithm has been implemented to show that collision detection can be conducted in real-time.展开更多
文摘Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occurs. An alternative algorithm using particle-based method is then proposed which can detect the collision among non-rigid deformable polygonal models. However, the original particle-based collision detection algorithm might not be sufficient enough in some situations due to the improper particle dispersion. Therefore, this research presents an improved algorithm which provides a particle to detect in each separated area so that particles always covered all over the object. The surface partitioning can be efficiently performed by using LBG quantization since it can classify object vertices into several groups base on a number of factors as required. A particle is then assigned to move between vertices in a group by the attractive forces received from other particles on neighbouring objects. Collision is detected when the distance between a pair of corresponding particles becomes very small. Lastly, the proposed algo- rithm has been implemented to show that collision detection can be conducted in real-time.