期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关键点的类别级三维可形变目标姿态估计 被引量:1
1
作者 曾一芳 钱伟中 +1 位作者 王旭鹏 杨玺 《计算机应用研究》 CSCD 北大核心 2022年第2期587-592,共6页
为了解决类别级三维可形变目标姿态估计问题,基于目标的关键点,提出了一种面向类别的三维可形变目标姿态估计方法。该方法设计了一种基于关键点的端到端深度学习框架,框架以PointNet++为后端网络,通过特征提取、部位分割、关键点提取和... 为了解决类别级三维可形变目标姿态估计问题,基于目标的关键点,提出了一种面向类别的三维可形变目标姿态估计方法。该方法设计了一种基于关键点的端到端深度学习框架,框架以PointNet++为后端网络,通过特征提取、部位分割、关键点提取和基于关键点的姿态估计部分实现可形变目标的姿态估计,具有计算精度高、鲁棒性强等优势。同时,基于ANCSH方法设计了适用于K-AOPE网络的关键点标准化分层表示方法,该方法仅需提取目标少量的关键点即可表示类别物体。为了验证方法的有效性,在公共数据集shape2motion上进行测试。实验结果显示,提出的姿态估计方法(以眼镜类别为例)在旋转角上的误差分别为2.3°、3.1°、3.7°,平移误差分别为0.034、0.030、0.046,连接状态误差为2.4°、2.5°,连接参数误差为1.2°、0.9°,0.008、0.010。与ANCSH方法相比,所提方法具有较高的准确性和鲁棒性。 展开更多
关键词 关键点 类别姿态估计 可形变目标 分层标准空间
下载PDF
Using LBG quantization for particle-based collision detection algorithm 被引量:1
2
作者 SAENGHAENGTHAM Nida KANONGCHAIYOS Pizzanu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第7期1225-1232,共8页
Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occur... Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occurs. An alternative algorithm using particle-based method is then proposed which can detect the collision among non-rigid deformable polygonal models. However, the original particle-based collision detection algorithm might not be sufficient enough in some situations due to the improper particle dispersion. Therefore, this research presents an improved algorithm which provides a particle to detect in each separated area so that particles always covered all over the object. The surface partitioning can be efficiently performed by using LBG quantization since it can classify object vertices into several groups base on a number of factors as required. A particle is then assigned to move between vertices in a group by the attractive forces received from other particles on neighbouring objects. Collision is detected when the distance between a pair of corresponding particles becomes very small. Lastly, the proposed algo- rithm has been implemented to show that collision detection can be conducted in real-time. 展开更多
关键词 Collision detection Deformable object PARTICLE LBG Vector quantization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部