Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these ...Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.展开更多
Malaria is one of the leading causes of consultation in African pediatric hospitals. In Gabon, malaria transmission is perennial. Plasmodium falciparum, responsible for the most severe form of the disease, represents ...Malaria is one of the leading causes of consultation in African pediatric hospitals. In Gabon, malaria transmission is perennial. Plasmodium falciparum, responsible for the most severe form of the disease, represents more than 95% of all species. In P. falciparum infection, the hyperparasitemia accounts among the main criteria of disease severity. However, in many endemic countries, a significant decrease of malaria burden accompanying with the diminution of parasite load in infected individuals has been demonstrated. The objective of the study was to analyze the occurrence of febrile syndrome in childhood and investigate whether the acute febrile illness could be associated with P. falciparum submicroscopic infection. A cross-sectional study was carried out during January to March 2013 in Franceville. A total of 203 acute febrile children were enrolled. A clinical examination and biomedical analysis including parasitological diagnosis by microscope were carried out in all the patients and PCR on microscope negative ones. Of 203 children recruited for febrile syndrome, 111 have been diagnosed positive for P. falciparum infection, 73 (35.9%) by microscope (ME) and 38 (18.71%) by PCR (submicroscopic infection = SM1) with an overall prevalence of 54.68%. Of the 11 1 P. falciparum infected individuals and according to the WHO criteria, 35 (31.53%) children showed a clinical picture of severe malaria against 76 (68.47%) others classified as uncomplicated malaria. The overall prevalence rates were therefore estimated as 17.24 (35/203) for severe cases and 37.43% (76/203) for uncomplicated ones. Clinically, these severe malaria cases (27 ME+ and 8 PCR+) were mainly composed of 85.71% of anaemic patients (30/35), 71.14% of prostrated individuals (25/35) and 57.14% of children with clinical icterus (20/35). However, only two cases of severe anaemia were observed, the remaining others cases were moderate (10) and mild anaemia (18). More interestingly, eight submicroscopic infected patients (22.85%) were found with neurological manifestations (prostration) and all were experiencing thrombocytopenia. Lastly, 1 hyperparasitemia, 6 hypoglycemia and 2 respiratory distresses were also observed among these severe malaria cases. P. falciparum submicroscopic infection may lead to severe malaria in perennial transmission area.展开更多
There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch...There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources.展开更多
Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes....Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes. Here we tested the hypothesis that soil microbes which can degrade allelochemicals may accumulate in soils over time by adaptation and therefore increase the degradation of allelochemicals and alleviate the allelopathic effects in biological invasions. As expected, soil microbes signifi- cantly decreased the allelopathic effects of leaf leachates of eight in the nine invasive plant species studied. In addition, Ageratina adenophora showed lower allelopathic effects in soil with long or intermediately invasion history than those in soil with short invasion history. The two main allelo- chemicals of the invader were degraded more rapidly with increasing invasion history in the soil. Correspondingly,biomass and activity of the soil microbes were higher in the soils with long invasion history than in that with short invasion history. Our results indicate that soil microbes may graduaUy adapt to the allelochemicals of Ageratina and alleviate its allelopathic effects and thus support the above hypothesis. It is necessary to consider the effects of soil microbes when testing the roles of allelopathy or the novel weapons hypothesis in biological invasions.展开更多
Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential o...Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential of CRISPR-Cas for detection of diverse analytes,we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12 a.We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background,i.e.,the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 lmol/L,respectively,highlighting the advantages of simplicity,sensitivity,short detection time,and low cost compared with the state-of-the-art biosensing approaches.Altogether,this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.展开更多
With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate perf...With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.展开更多
基金北京市自然科学基金,国家重点基础研究发展计划(973计划),the fund of Forest Protection Laboratory, State Forestry Administration
文摘Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.
文摘Malaria is one of the leading causes of consultation in African pediatric hospitals. In Gabon, malaria transmission is perennial. Plasmodium falciparum, responsible for the most severe form of the disease, represents more than 95% of all species. In P. falciparum infection, the hyperparasitemia accounts among the main criteria of disease severity. However, in many endemic countries, a significant decrease of malaria burden accompanying with the diminution of parasite load in infected individuals has been demonstrated. The objective of the study was to analyze the occurrence of febrile syndrome in childhood and investigate whether the acute febrile illness could be associated with P. falciparum submicroscopic infection. A cross-sectional study was carried out during January to March 2013 in Franceville. A total of 203 acute febrile children were enrolled. A clinical examination and biomedical analysis including parasitological diagnosis by microscope were carried out in all the patients and PCR on microscope negative ones. Of 203 children recruited for febrile syndrome, 111 have been diagnosed positive for P. falciparum infection, 73 (35.9%) by microscope (ME) and 38 (18.71%) by PCR (submicroscopic infection = SM1) with an overall prevalence of 54.68%. Of the 11 1 P. falciparum infected individuals and according to the WHO criteria, 35 (31.53%) children showed a clinical picture of severe malaria against 76 (68.47%) others classified as uncomplicated malaria. The overall prevalence rates were therefore estimated as 17.24 (35/203) for severe cases and 37.43% (76/203) for uncomplicated ones. Clinically, these severe malaria cases (27 ME+ and 8 PCR+) were mainly composed of 85.71% of anaemic patients (30/35), 71.14% of prostrated individuals (25/35) and 57.14% of children with clinical icterus (20/35). However, only two cases of severe anaemia were observed, the remaining others cases were moderate (10) and mild anaemia (18). More interestingly, eight submicroscopic infected patients (22.85%) were found with neurological manifestations (prostration) and all were experiencing thrombocytopenia. Lastly, 1 hyperparasitemia, 6 hypoglycemia and 2 respiratory distresses were also observed among these severe malaria cases. P. falciparum submicroscopic infection may lead to severe malaria in perennial transmission area.
基金funding from the Bill and Melinda Gates Foundation Grand Challenge Award (OPP1032970)
文摘There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources.
基金We are grateful to Da-Wen Li and Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences for field assistance. This work was supported by the National Natural Science Foundation of China (31100410, 31470575 and 30830027), the National Key Technology R&D Program of China (2011BAD30B00), and Chinese Academy Science 135 Program (XTBG-T01, F01).
文摘Soil microbes are one of the most important determinants of allelopathic effects in the field. However, most studies testing the role of allelopathy in biological invasions did not consider the roles of soil microbes. Here we tested the hypothesis that soil microbes which can degrade allelochemicals may accumulate in soils over time by adaptation and therefore increase the degradation of allelochemicals and alleviate the allelopathic effects in biological invasions. As expected, soil microbes signifi- cantly decreased the allelopathic effects of leaf leachates of eight in the nine invasive plant species studied. In addition, Ageratina adenophora showed lower allelopathic effects in soil with long or intermediately invasion history than those in soil with short invasion history. The two main allelo- chemicals of the invader were degraded more rapidly with increasing invasion history in the soil. Correspondingly,biomass and activity of the soil microbes were higher in the soils with long invasion history than in that with short invasion history. Our results indicate that soil microbes may graduaUy adapt to the allelochemicals of Ageratina and alleviate its allelopathic effects and thus support the above hypothesis. It is necessary to consider the effects of soil microbes when testing the roles of allelopathy or the novel weapons hypothesis in biological invasions.
基金supported by the National Natural Science Foundation of China (31770055, 31922002, 31720103901, and 31772242)the 111 Project (B18022)+4 种基金the Fundamental Research Funds for the Central Universities (22221818014)the Shanghai Science and Technology Commission (18JC1411900)the Young Scientists Innovation Promotion Association of Chinese Academy of Sciences (2016087) to Weishan Wangthe Shandong Taishan Scholar Program of China to Lixin Zhangthe Open Project Funding of the State Key Laboratory of Bioreactor Engineering
文摘Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential of CRISPR-Cas for detection of diverse analytes,we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12 a.We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background,i.e.,the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 lmol/L,respectively,highlighting the advantages of simplicity,sensitivity,short detection time,and low cost compared with the state-of-the-art biosensing approaches.Altogether,this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.
基金the National Natural Science Foundation of China(NSFC,22109009,21975027,22035005,and 52073159)China Postdoctoral Science Foundation(2020M680376)+1 种基金the National Key R&D Program of China(2017YFB1104300)the NSFCSTINT(21911530143).
文摘With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.