-
题名基于概率线性判别分析的可扩展似然公式化人脸识别
- 1
-
-
作者
赵芳
马玉磊
-
机构
新乡学院计算机与信息工程学院
-
出处
《科学技术与工程》
北大核心
2014年第6期36-41,53,共7页
-
基金
河南省基础与前沿技术研究项目(No.112300410266)资助
-
文摘
针对概率线性判别分析(PLDA)方法在训练及似然计算过程中矩阵大小随着标志类采样数量呈平方增长的问题,提出了一种基于概率线性判别分析的可扩展似然公式化方法。首先通过简单变换变量对角化PLDA模型;然后,利用贝叶斯准则和最大期望算法估算潜在变量一阶矩、二阶矩,从而对变换后的PLDA模型进行可扩展训练;最后,通过结合Woodbury矩阵特征存储模型信息,从而将大矩阵转换成低维向量或标量。在FLW及Multi-PIE两大通用人脸数据库上的实验验证了所提方法的有效性及可靠性,实验结果表明,相比其它几种较为先进的同类人脸识别方法,所提方法不仅取得了更高的识别率、更低的半错误率,还大大地降低了训练、似然计算复杂度。
-
关键词
人脸识别
概率线性判别分析
可扩展公式化
贝叶斯准则
最大期望
-
Keywords
face recognition
probabilistic linear discriminant analysis
scalable formulation
bayesian criterion
expectation maximization
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-